1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Plasmonic band edge effects on the transmission properties of metal gratings
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3638161
1.
1. R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum”, Philos. Mag. 4, 396 (1902).
2.
2. R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity”, Philos. Mag. 23, 310 (1912).
3.
3. Lord Rayleigh, “On the Dynamical Theory of Gratings”, Proc. R. Soc. London, Ser. A 79, 399 (1907).
4.
4. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)”, J. Opt. Soc. Am. 31, 213 (1941).
http://dx.doi.org/10.1364/JOSA.31.000213
5.
5. A. Hessel and A. A. Oliner, “A New Theory of Wood's Anomalies on Optical Gratings”, Applied Optics 4, 1275 (1965).
http://dx.doi.org/10.1364/AO.4.001275
6.
6. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Z. Phys. 216, 398 (1968).
http://dx.doi.org/10.1007/BF01391532
7.
7. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light”, Z. Naturforsch., Teil. A 23, 2135 (1968).
8.
8. T. W. Ebessen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays”, Nature 391, 667 (1998).
http://dx.doi.org/10.1038/35570
9.
9. R. Gordon, “Light in a subwavelength slit in metal: propagation and reflection”, Phys. Rev. B 73, 153405 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.153405
10.
10. J. Bravo-Abad, L. Martin-Moreno and F. J. Garcia-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical optical limit, Phys. Rev. E 69, 026601 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.026601
11.
11. Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, “Transmission of light through slit apertures in metallic films”, Opt. Express 12, 6106 (2004).
http://dx.doi.org/10.1364/OPEX.12.006106
12.
12. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit”, Phys. Rev. Lett. 89, 063901 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.063901
13.
13. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies”, Phys. Rev. Lett. 92, 147401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.147401
14.
14. M. A. Vincenti, D. de Ceglia, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, Extraordinary transmission in the ultraviolet range from subwavelength slits on semiconductors, Journal of Applied Physics 107, 053101 (2010).
http://dx.doi.org/10.1063/1.3318460
15.
15. J. T. Shen, P. B. Catrysse and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction”, Phys. Rev. Lett. 94, 197401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.197401
16.
16. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolf, T. W. Ebessen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films”, J. Opt, Soc. Am. B 16, 1743 (1999).
http://dx.doi.org/10.1364/JOSAB.16.001743
17.
17. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits”, Phys. Rev. Lett. 83, 2845 (1999).
http://dx.doi.org/10.1103/PhysRevLett.83.2845
18.
18. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.1114
19.
19. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals”, Phys. Rev. B 66, 155412 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.155412
20.
20. Q. Cao and Ph. Lalanne, “Negative Role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.057403
21.
21. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures”, Phys. Rev. B 68, 125404 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.125404
22.
22. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film”, Opt. Express 13, 4485 (2005).
http://dx.doi.org/10.1364/OPEX.13.004485
23.
23. D. Pacifici, H. J. Lezec, H. A. Atwater, J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits”, Phys. Rev. B 77, 115411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.115411
24.
24. W. L. Barnes, W. A. Murray, J. Ditinger, E. Devaux and T. W. Ebessen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film”, Phys. Rev. Lett. 92, 107401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.107401
25.
25. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin (1988).
26.
26. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays”, Opt. Express 12, 3629 (2004).
http://dx.doi.org/10.1364/OPEX.12.003629
27.
27. S. Meier, Plasmonics: Fundamentals and applications, SpringerNew York (2007).
28.
28. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metal gratings”, Phys. Rev. B 66, 195105 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.195105
29.
29. K. G. Lee and Q-Han Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits”, Phys. Rev. B 95, 103902 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.103902
30.
30. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces”, Science 305,847 (2004).
http://dx.doi.org/10.1126/science.1098999
31.
31. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures”, Rev. of Mod. Phys. 82, 729 (2010).
http://dx.doi.org/10.1103/RevModPhys.82.729
32.
32. Comsol Multiphysics 3.5a; http://www.comsol.com
33.
33. R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double negative metamaterials slab”, Opt. Express 11, 662 (2003).
http://dx.doi.org/10.1364/OE.11.000662
34.
34. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, J. W. Haus, A. M. Zheltikov, “Negative refraction of ultrashort electromagnetic pulses”, Appl. Phys. B 81, 393 (2005).
http://dx.doi.org/10.1007/s00340-005-1892-4
35.
35. E. D. Palik, Handbook of Optical Constants of Solids, Vol. I, pp. 353357, Academic Press - New York (1985).
36.
36. M. A. Vincenti, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, D. de Ceglia, N. Akozbek., M. J. Bloemer, P. Ashley, M. Scalora, “Enhanced transmission and second harmonic generation from subwavelength slits on metal substrates”, Proceedings of SPIE 6987, 69870O (2008).
http://dx.doi.org/10.1117/12.779847
37.
37. M. C. Buncick, P. R. Ashley, M. Scalora, N. Akozbek, M. A. Vincenti, M. Centini, J. D. Fowlkes, I. N. Ivanov, “Investigation on the interaction of Surface Plasmons (SP) with an Electro Optiic Polymer and Development of SP Optical Devices”, IEEE Proceedings of 17th Biennal University/Government Industry Micro/Nano Symposium, 128 (2008).
38.
38. A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits”, Phys. Rev. B 76, 235430 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.235430
39.
39. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction”, Phys. Rev. Lett. 21, 1530 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.1530
40.
40. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on gratings”, Phys. Rev. B 51, 11164 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.11164
41.
41. S. S. Senlick, A. Kocabas, and A. Aydinli, “Grating based plasmonic band gap cavities”, Opt. Express 17, 15541 (2009).
http://dx.doi.org/10.1364/OE.17.015541
42.
42. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes, Opt. Express 13, 70 (2005).
http://dx.doi.org/10.1364/OPEX.13.000070
43.
43. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits”, Appl. Phys. Lett. 88, 031101 (2006).
http://dx.doi.org/10.1063/1.2164905
44.
44. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 2799 (1996).
http://dx.doi.org/10.1103/PhysRevA.53.2799
45.
45. A. A. Oliner, D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture, Part I: Basic features”, Proceedings of IEEE Antennas and Propagation Society Symposium, Columbus, OH, 2, 1091 (2003).
46.
46. D. R. Jackson, T. Zhao, J. T. Williams, A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture, Part II: Leaky-Wave Antenna Model”, Proceedings of IEEE Antennas and Propagation Society Symposium, Columbus, OH, 2, 1095 (2003).
47.
47. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture”, Opt. Expr. 16, 21271 (2008).
http://dx.doi.org/10.1364/OE.16.021271
48.
48. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like guided by thin, lossy metal films”, Phys. Rev. B 33, 5186 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.5186
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3638161
Loading
/content/aip/journal/adva/1/3/10.1063/1.3638161
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3638161
2011-09-01
2014-09-19

Abstract

We present a detailed analysis of the optical properties of one-dimensional arrays of slits in metalfilms. Although enhanced transmission windows are dominated by Fabry-Perot cavity modes localized inside the slits, the periodicity introduces surface modes that can either enhance or inhibit light transmission. We thus illustrate the interaction between cavity modes and surface modes in both finite and infinite arrays of slits. In particular we study a grating that clearly separates surface plasmon effects from Wood-Rayleigh anomalies. The periodicity of the grating induces a strong plasmonicband gap that inhibits coupling to the cavity modes for frequencies near the center of the band gap, thereby reducing the transmission of the grating. Strong field localization at the high energy plasmonic band edge enhances coupling to the cavity modes while field localization at the low energy band edge leads to weak cavity coupling and reduced transmission.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3638161.html;jsessionid=gm22e1o19ebtt.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3638161&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmonic band edge effects on the transmission properties of metal gratings
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3638161
10.1063/1.3638161
SEARCH_EXPAND_ITEM