NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
Plasmonic band edge effects on the transmission properties of metal gratings
Rent this article for
Access full text Article
1. R. W. Wood, “On the remarkable case of uneven distribution of a light in a diffractive grating spectrum”, Philos. Mag. 4, 396 (1902).
2. R. W. Wood, “Diffraction gratings with controlled groove form and abnormal distribution of intensity”, Philos. Mag. 23, 310 (1912).
3. Lord Rayleigh, “On the Dynamical Theory of Gratings”, Proc. R. Soc. London, Ser. A 79, 399 (1907).
4. U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves)”, J. Opt. Soc. Am. 31, 213 (1941).
5. A. Hessel and A. A. Oliner, “A New Theory of Wood's Anomalies on Optical Gratings”, Applied Optics 4, 1275 (1965).
6. A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection”, Z. Phys. 216, 398 (1968).
7. E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light”, Z. Naturforsch., Teil. A 23, 2135 (1968).
8. T. W. Ebessen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays”, Nature 391, 667 (1998).
9. R. Gordon, “Light in a subwavelength slit in metal: propagation and reflection”, Phys. Rev. B 73, 153405 (2006).
10. J. Bravo-Abad, L. Martin-Moreno and F. J. Garcia-Vidal, “Transmission properties of a single metallic slit: from the subwavelength regime to the geometrical optical limit, Phys. Rev. E 69, 026601 (2004).
11. Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, “Transmission of light through slit apertures in metallic films”, Opt. Express 12, 6106 (2004).
12. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit”, Phys. Rev. Lett. 89, 063901 (2002).
13. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies”, Phys. Rev. Lett. 92, 147401 (2004).
14. M. A. Vincenti, D. de Ceglia, M. Buncick, N. Akozbek, M. J. Bloemer, and M. Scalora, Extraordinary transmission in the ultraviolet range from subwavelength slits on semiconductors, Journal of Applied Physics 107, 053101 (2010).
15. J. T. Shen, P. B. Catrysse and S. Fan, “Mechanism for Designing Metallic Metamaterials with a High Index of Refraction”, Phys. Rev. Lett. 94, 197401 (2005).
16. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolf, T. W. Ebessen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films”, J. Opt, Soc. Am. B 16, 1743 (1999).
17. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits”, Phys. Rev. Lett. 83, 2845 (1999).
18. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Phys. Rev. Lett. 86, 1114 (2001).
19. F. J. Garcia-Vidal and L. Martin-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals”, Phys. Rev. B 66, 155412 (2002).
20. Q. Cao and Ph. Lalanne, “Negative Role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002).
21. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures”, Phys. Rev. B 68, 125404 (2003).
22. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through a periodic array of slits in a thick metallic film”, Opt. Express 13, 4485 (2005).
23. D. Pacifici, H. J. Lezec, H. A. Atwater, J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits”, Phys. Rev. B 77, 115411 (2008).
24. W. L. Barnes, W. A. Murray, J. Ditinger, E. Devaux and T. W. Ebessen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of sub-wavelength holes in a metal film”, Phys. Rev. Lett. 92, 107401 (2004).
25. H. Raether, Surface Polaritons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin (1988).
26. H. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays”, Opt. Express 12, 3629 (2004).
27. S. Meier, Plasmonics: Fundamentals and applications, SpringerNew York (2007).
28. M. M. J. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metal gratings”, Phys. Rev. B 66, 195105 (2002).
29. K. G. Lee and Q-Han Park, “Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits”, Phys. Rev. B 95, 103902 (2005).
30. J. B. Pendry, L. Martin-Moreno, F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces”, Science 305,847 (2004).
31. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures”, Rev. of Mod. Phys. 82, 729 (2010).
32. Comsol Multiphysics 3.5a;
33. R. W. Ziolkowski, “Pulsed and CW Gaussian beam interactions with double negative metamaterials slab”, Opt. Express 11, 662 (2003).
34. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, J. W. Haus, A. M. Zheltikov, “Negative refraction of ultrashort electromagnetic pulses”, Appl. Phys. B 81, 393 (2005).
35. E. D. Palik, Handbook of Optical Constants of Solids, Vol. I, pp. 353357, Academic Press - New York (1985).
36. M. A. Vincenti, M. De Sario, V. Petruzzelli, A. D’Orazio, F. Prudenzano, D. de Ceglia, N. Akozbek., M. J. Bloemer, P. Ashley, M. Scalora, “Enhanced transmission and second harmonic generation from subwavelength slits on metal substrates”, Proceedings of SPIE 6987, 69870O (2008).
37. M. C. Buncick, P. R. Ashley, M. Scalora, N. Akozbek, M. A. Vincenti, M. Centini, J. D. Fowlkes, I. N. Ivanov, “Investigation on the interaction of Surface Plasmons (SP) with an Electro Optiic Polymer and Development of SP Optical Devices”, IEEE Proceedings of 17th Biennal University/Government Industry Micro/Nano Symposium, 128 (2008).
38. A. I. Fernandez-Dominguez, F. J. García-Vidal, L. Martín-Moreno, “Resonant transmission of light through finite arrays of slits”, Phys. Rev. B 76, 235430 (2007).
39. R. H. Ritchie, E. T. Arakawa, J. J. Cowan, R. N. Hamm, “Surface-plasmon resonance effect in grating diffraction”, Phys. Rev. Lett. 21, 1530 (1968).
40. W. L. Barnes, T. W. Preist, S. C. Kitson, J. R. Sambles, N. P. K. Cotter, and D. J. Nash, “Photonic gaps in the dispersion of surface plasmon on gratings”, Phys. Rev. B 51, 11164 (1995).
41. S. S. Senlick, A. Kocabas, and A. Aydinli, “Grating based plasmonic band gap cavities”, Opt. Express 17, 15541 (2009).
42. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes, Opt. Express 13, 70 (2005).
43. P. B. Catrysse, G. Veronis, H. Shin, J. T. Shen, and S. Fan, “Guided modes supported by plasmonic films with a periodic arrangement of subwavelength slits”, Appl. Phys. Lett. 88, 031101 (2006).
44. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, “Measurement of spontaneous-emission enhancement near the one-dimensional photonic band edge of semiconductor heterostructures,” Phys. Rev. A 53, 2799 (1996).
45. A. A. Oliner, D. R. Jackson, “Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture, Part I: Basic features”, Proceedings of IEEE Antennas and Propagation Society Symposium, Columbus, OH, 2, 1091 (2003).
46. D. R. Jackson, T. Zhao, J. T. Williams, A. A. Oliner, “Leaky surface-plasmon theory for dramatically enhanced transmission through a sub-wavelength aperture, Part II: Leaky-Wave Antenna Model”, Proceedings of IEEE Antennas and Propagation Society Symposium, Columbus, OH, 2, 1095 (2003).
47. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture”, Opt. Expr. 16, 21271 (2008).
48. J. J. Burke, G. I. Stegeman, T. Tamir, “Surface-polariton-like guided by thin, lossy metal films”, Phys. Rev. B 33, 5186 (1986).

Data & Media loading...


Article metrics loading...



We present a detailed analysis of the optical properties of one-dimensional arrays of slits in metalfilms. Although enhanced transmission windows are dominated by Fabry-Perot cavity modes localized inside the slits, the periodicity introduces surface modes that can either enhance or inhibit light transmission. We thus illustrate the interaction between cavity modes and surface modes in both finite and infinite arrays of slits. In particular we study a grating that clearly separates surface plasmon effects from Wood-Rayleigh anomalies. The periodicity of the grating induces a strong plasmonicband gap that inhibits coupling to the cavity modes for frequencies near the center of the band gap, thereby reducing the transmission of the grating. Strong field localization at the high energy plasmonic band edge enhances coupling to the cavity modes while field localization at the low energy band edge leads to weak cavity coupling and reduced transmission.


Full text loading...

This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Plasmonic band edge effects on the transmission properties of metal gratings