Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Aaron and C. Tsouris, Sep. Sci. Technol. 40, 321 (2005).
2. H. L. Bai and A. C. Yeh, Ind. Eng. Chem. Res. 36, 2490 (1997).
3. A. B. Rao and E. S. Rubin, Environ. Sci. Technol. 36, 4467 (2002).
4. S. Sircar, T. C. Golden and M. B. Rao, Carbon 34, 1 (1996).
5. R. V. Siriwardane, M. Shen, E. P. Fisher and J. Poston, Energy Fuels 15, 279 (2001).
6. T. D. Burchell, R. R. Judkins, M. R. Rogers and A. M. Williams, Carbon 35, 1279 (1997).
7. M. Cinke, J. Li, C. W. Bauschlicher Jr., A. Ricca, and M. Meyyappan, Chem. Phys. Lett. 376, 761 (2003).
8. S. C. Hsu, C. S. Lu, F. S. Su, W. Zeng and W. Chen, Chem. Eng. Sci. 65, 1354 (2010).
9. A. K. Mishra and S. Ramaprabhu, Energy Environ. Sci. 4, 889 (2011).
10. A. K. Geim and K. S. Noveselov, Nat. Mater. 6, 183 (2006).
11. A. Ghosh, K. S. Subrahmanyam, K. S. Krishna, S. Datta, A. Govindaraj, S. K. Pati and C. N. R. Rao, J. Phys. Chem. C 112, 15704 (2008).
12. A. Kaniyoor, T. T. Baby and S. Ramaprabhu, J. Mater. Chem. 20, 8467 (2010).
13. W. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958).
14. W. M. Hlaing Oo and M. D. McCluskey, Appl. Phys. Lett. 86, 073111 (2005).
15. W. L. Yim, O. Byl and J. T. Yates Jr. and J. K. Johnson, J. Chem. Phys. 120, 5377 (2004).
16. Y. Gensterbluma, P. van Hemert, P. Billemont, A. Busch, D. Charriére, D. Lia, B. M. Krooss, G. de Weireld, D. Prinza and K. H. A. A. Wolf, Carbon 47, 2958 (2009).
17. Z. Zhang, M. Xu, H. Wang and Z. Li, Chem. Eng. J. 160, 571 (2010).
18. S. Cavenati, C. A. Grande and A. E. Rodrigues, J. Chem. Eng. Data 49, 1095 (2004).
19. A. R. Millward and O. M. Yaghi, J. Am. Chem. Soc. 127, 17998 (2005).

Data & Media loading...


Article metrics loading...



Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes) have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd