1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Effect of aluminum addition on the optical, morphology and electrical behavior of spin coated zinc oxide thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3640406
1.
1. J. Hu and R. G. Gordan, J. Appl. Phys. 71, 880 (1992).
http://dx.doi.org/10.1063/1.351309
2.
2. E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, MRS Bulletin 32, 242 (2007).
http://dx.doi.org/10.1557/mrs2007.29
3.
3. C. Klingshirn, Phys. Stat. Sol. (B) 244, 3027 (2007).
http://dx.doi.org/10.1002/pssb.200743072
4.
4. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004).
http://dx.doi.org/10.1116/1.1714985
5.
5. A. Janotti and C. G. V. de Walle, Rep. Prog. Phys. 72, 126501 (2009).
http://dx.doi.org/10.1088/0034-4885/72/12/126501
6.
6. P. J. Kelly and Y. Zhou, J. Vac. Sci. Technol. A 24, 1782 (2006).
http://dx.doi.org/10.1116/1.2218857
7.
7. I. R. Abothu, P. M. Raj, D. Balaraman, M. D. Sacks, S. Bhattacharya and R. R. Tummala, IEEE, “9th International Symposium on Advanced Packaging Materials”, (2004) p.7883.
8.
8. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li and H. Cui, Vacuum 77, 57 (2004).
http://dx.doi.org/10.1016/j.vacuum.2004.08.003
9.
9. C. Jagadish, S. J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties and applications, 1st ed. (Elsevier, Amsterdam, 2006), p. 3.
10.
10. C.-Y. Tsay, K.-S. Fan, Y.-W. Wang, C.-J. Chang, Y. –K. Tseng, C.-K. Lin, Ceram. Int. 36, 1791 (2010).
http://dx.doi.org/10.1016/j.ceramint.2010.03.005
11.
11. JCPDS.File No.80-0075
12.
12. B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, Massachusetts, 1956), p. 99
13.
13. Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, Mater. Sci. Eng., C 28, 613 (2008).
http://dx.doi.org/10.1016/j.msec.2007.10.006
14.
14. G. Luka, T. Krajewski, L. Wachnicki, B. Witkowski, E. Lusakowska, W. Paszkowicz, E. Guziewicz, and M. Godlewski, Phys. Status Solidi A 207, 1568 (2010).
http://dx.doi.org/10.1002/pssa.200983709
15.
15. P. T. Hsieh, Y. C. Chen, M. S. Lee, K. S. Kao, M. C. Kao, M. P. Houng, J Sol-Gel Sci Technol 47, 1 (2008).
http://dx.doi.org/10.1007/s10971-008-1747-7
16.
16. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, J. Appl. Phys 108, 1037211 (2010).
http://dx.doi.org/10.1063/1.3511346
17.
17. L. Hadjeris, L. Herissi, M. B. Assouar, T. Easwarakhanthan, J. Bougdira, N. Attaf and M. S. Aida, Semicond. Sci. Technol. 24, 035006 (2009).
http://dx.doi.org/10.1088/0268-1242/24/3/035006
18.
18. F. K. Shan, Y. S. Yu, J. Eur. Ceram Soc 24, 1869 (2004).
http://dx.doi.org/10.1016/S0955-2219(03)00490-4
19.
19. D. D. -Malinovska, H. Nichev, O. Angelov, V. Grigorov, M. Kamenova, Superlattices Microstruct. 42, 123 (2007).
http://dx.doi.org/10.1016/j.spmi.2007.04.025
20.
20. H.-m Zhou, D.-q. Yi, Z.-m. Yu, L.-r. Xiao, J. Li, Thin Solid Films 515, 6909 (2007).
http://dx.doi.org/10.1016/j.tsf.2007.01.041
21.
21. J.-P. Lin, S.-W. Chen, and J.-M. Wu, Electrochem. Solid-State Lett. 12, J1 (2009).
http://dx.doi.org/10.1149/1.2998573
22.
22. B. J. Babu, A. Maldonadoa, S. Velumania and R. Asomozaa, Mater. Sci. Eng., B 174, 31 (2010).
http://dx.doi.org/10.1016/j.mseb.2010.03.010
23.
23. S. Thota and J. Kumar, J. Nanosci. Nanotechnol. 8, 4073 (2008).
24.
24. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal and D. Jana, Progress in Materials Science 54, 89 (2009).
http://dx.doi.org/10.1016/j.pmatsci.2008.07.002
25.
25. I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, and L. Engström, Phys. Rev. B 30, 3240 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.3240
26.
26. C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams and A. K. Pradhan, Semicond. Sci. Technol. 23, 085019 (2008).
http://dx.doi.org/10.1088/0268-1242/23/8/085019
27.
27. M. H. Mamat, M. Z. Sahdan, S. Amizam, H. A. Rafaie, Z. Khusaimi and M. Rusop, J. Ceram. Soc. Jpn. 117, 1263 (2009).
http://dx.doi.org/10.2109/jcersj2.117.1263
28.
28. M. H. Mamat, M. Z. Sahdan, Z. Khusaimi and M. Rusop, IEEE, “International Conference on Electronic Devices, systems and Applications”, (2010) p.408411.
29.
29. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996).
http://dx.doi.org/10.1063/1.360962
30.
30. J. S. Wellings, N. B. Chaure, S. N. Heavens and I. M. Dharmadasa, Thin Solid Films 516, 3893 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.07.156
31.
31. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell and W. C. Harsch, Solid State Commun. 105, 399 (1998).
http://dx.doi.org/10.1016/S0038-1098(97)10145-4
32.
32. S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 87, 2413 (2000).
http://dx.doi.org/10.1063/1.372194
33.
33. A. Travlos, N. Boukos, C. Chandrinou, Ho-Sang Kwack, and Le Si Dang, J. Appl. Phys. 106, 104307 (2009).
http://dx.doi.org/10.1063/1.3259413
34.
34. M. J. Alam and D. C. Cameron, J. Vac. Sci. Technol. A. 19, 1642 (2001).
http://dx.doi.org/10.1116/1.1340659
35.
35. R. B. H. Tahar and N. B. H. Tahar, J. Appl. Phys. 92, 4498 (2002).
http://dx.doi.org/10.1063/1.1509083
36.
36. H. Morkoç, Ümit Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (WILEY-VCH Verlg GbbH & Co. KGaA, Weinheim, 2009), p. 3.
37.
37. J.-P. Lin and J.-M. Wu, Appl. Phys. Lett. 92, 134103 (2008).
http://dx.doi.org/10.1063/1.2905279
38.
38. W. M. Tsang, F. L. Wong, M. K. Fung, J. C. Chang, C. S. Lee and S. T. Lee, Thin Solid Films 517, 891 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.157
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3640406
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

X-ray diffraction patterns of ZnO thin films, prepared by spin coating with a sol of molarity 1M on glass substrate and dried after each coating at 400°C for 10 min.

Image of FIG. 2.

Click to view

FIG. 2.

X-ray diffraction patterns of ZnO and 1 at % Al-ZnO thin films, prepared by spin coating with a sol of molarity 1M on glass substrate after annealing at 500°C for 1h each in a) air and b) vacuum ∼10-3 mbar.

Image of FIG. 3.

Click to view

FIG. 3.

Atomic force microscopic images of (a, e) ZnO and (b, f) 1 at % Al-ZnO in 2D and (c, g) ZnO and (d, h) 1 at % Al-ZnO thin films in 3D after annealing at 500°C for 1h each in air (a, b, c, d) and vacuum (e, f, g, h).

Image of FIG. 4.

Click to view

FIG. 4.

Histograms showing number percentage (%) versus pore diameter (nm) of the (a, b) ZnO and (c, d) 1 at % Al-ZnO thin films after annealing at 500°C for 1h each in air (a, c) and vacuum (b, d).

Image of FIG. 5.

Click to view

FIG. 5.

Field emission scanning electron microscope images of (a, c) ZnO and (b, d) 1 at % Al-ZnO thin films after annealing at 500°C for 1h each in air (a, b) and vacuum (c, d).

Image of FIG. 6.

Click to view

FIG. 6.

a) Optical transmittance spectra of ZnO and 1 at % Al-ZnO thin films after annealing at 500°C. The inset depicts a zoom image of band transition zone and b) (αhυ)2 versus (hυ) plot with corresponding ln (α) versus (hυ) plot in the inset.

Tables

Generic image for table

Click to view

Table I.

The values of hexagonal cell parameters (a, c), average crystallite size (D), Urbach width (ΔE), absorption edge (E1), optical absorption coefficient (αo) at E1, sheet resistance (Rs), and resistivity (ρ) of ZnO and 1 at% Al-ZnO thin films.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3640406
2011-09-07
2014-04-17

Abstract

Aluminum-doped ZnO thin films of high optical transmittance (∼ 84-100%) and low resistivity (∼ 2.3x10-2 Ωcm) have been prepared on glass substrate by the spin coating and subsequent annealing at 500°C for 1h in air or vacuum. Effect of aluminumdoping and annealing environment on morphology, optical transmittance and electrical resistivity of ZnO thin films has been studied with possible application as a transparent electrode in photovoltaic. The changes occurring due to aluminum addition include reduction in grain size, root mean square roughness, peak-valley separation, and sheet resistance with improvement in the optical transmittance to 84-100% in the visible range. The origin of low electrical resistivity lies in increase in i) electron concentration following aluminumdoping (being trivalent), formation of oxygen vacancies due to vacuum annealing, filling of cation site with additional zinc at solution stage itself and ii) carrier mobility.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3640406.html;jsessionid=6qja6hcgl760u.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3640406&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Effect of aluminum addition on the optical, morphology and electrical behavior of spin coated zinc oxide thin films
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3640406
10.1063/1.3640406
SEARCH_EXPAND_ITEM