Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. Hu and R. G. Gordan, J. Appl. Phys. 71, 880 (1992).
2. E. Fortunato, D. Ginley, H. Hosono, and D. C. Paine, MRS Bulletin 32, 242 (2007).
3. C. Klingshirn, Phys. Stat. Sol. (B) 244, 3027 (2007).
4. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo and T. Steiner, J. Vac. Sci. Technol. B 22, 932 (2004).
5. A. Janotti and C. G. V. de Walle, Rep. Prog. Phys. 72, 126501 (2009).
6. P. J. Kelly and Y. Zhou, J. Vac. Sci. Technol. A 24, 1782 (2006).
7. I. R. Abothu, P. M. Raj, D. Balaraman, M. D. Sacks, S. Bhattacharya and R. R. Tummala, IEEE, “9th International Symposium on Advanced Packaging Materials”, (2004) p.7883.
8. H. Li, J. Wang, H. Liu, C. Yang, H. Xu, X. Li and H. Cui, Vacuum 77, 57 (2004).
9. C. Jagadish, S. J. Pearton, Zinc oxide bulk, thin films and nanostructures: processing, properties and applications, 1st ed. (Elsevier, Amsterdam, 2006), p. 3.
10. C.-Y. Tsay, K.-S. Fan, Y.-W. Wang, C.-J. Chang, Y. –K. Tseng, C.-K. Lin, Ceram. Int. 36, 1791 (2010).
11. JCPDS.File No.80-0075
12. B. D. Cullity, Elements of X-ray Diffraction, (Addison-Wesley, Massachusetts, 1956), p. 99
13. Z. Ben Ayadi, L. El Mir, K. Djessas, S. Alaya, Mater. Sci. Eng., C 28, 613 (2008).
14. G. Luka, T. Krajewski, L. Wachnicki, B. Witkowski, E. Lusakowska, W. Paszkowicz, E. Guziewicz, and M. Godlewski, Phys. Status Solidi A 207, 1568 (2010).
15. P. T. Hsieh, Y. C. Chen, M. S. Lee, K. S. Kao, M. C. Kao, M. P. Houng, J Sol-Gel Sci Technol 47, 1 (2008).
16. B. Nasr, S. Dasgupta, D. Wang, N. Mechau, R. Kruk, and H. Hahn, J. Appl. Phys 108, 1037211 (2010).
17. L. Hadjeris, L. Herissi, M. B. Assouar, T. Easwarakhanthan, J. Bougdira, N. Attaf and M. S. Aida, Semicond. Sci. Technol. 24, 035006 (2009).
18. F. K. Shan, Y. S. Yu, J. Eur. Ceram Soc 24, 1869 (2004).
19. D. D. -Malinovska, H. Nichev, O. Angelov, V. Grigorov, M. Kamenova, Superlattices Microstruct. 42, 123 (2007).
20. H.-m Zhou, D.-q. Yi, Z.-m. Yu, L.-r. Xiao, J. Li, Thin Solid Films 515, 6909 (2007).
21. J.-P. Lin, S.-W. Chen, and J.-M. Wu, Electrochem. Solid-State Lett. 12, J1 (2009).
22. B. J. Babu, A. Maldonadoa, S. Velumania and R. Asomozaa, Mater. Sci. Eng., B 174, 31 (2010).
23. S. Thota and J. Kumar, J. Nanosci. Nanotechnol. 8, 4073 (2008).
24. S. Dutta, S. Chattopadhyay, A. Sarkar, M. Chakrabarti, D. Sanyal and D. Jana, Progress in Materials Science 54, 89 (2009).
25. I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, and L. Engström, Phys. Rev. B 30, 3240 (1984).
26. C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams and A. K. Pradhan, Semicond. Sci. Technol. 23, 085019 (2008).
27. M. H. Mamat, M. Z. Sahdan, S. Amizam, H. A. Rafaie, Z. Khusaimi and M. Rusop, J. Ceram. Soc. Jpn. 117, 1263 (2009).
28. M. H. Mamat, M. Z. Sahdan, Z. Khusaimi and M. Rusop, IEEE, “International Conference on Electronic Devices, systems and Applications”, (2010) p.408411.
29. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996).
30. J. S. Wellings, N. B. Chaure, S. N. Heavens and I. M. Dharmadasa, Thin Solid Films 516, 3893 (2008).
31. D. C. Look, D. C. Reynolds, J. R. Sizelove, R. L. Jones, C. W. Litton, G. Cantwell and W. C. Harsch, Solid State Commun. 105, 399 (1998).
32. S. A. Studenikin, N. Golego, and M. Cocivera, J. Appl. Phys. 87, 2413 (2000).
33. A. Travlos, N. Boukos, C. Chandrinou, Ho-Sang Kwack, and Le Si Dang, J. Appl. Phys. 106, 104307 (2009).
34. M. J. Alam and D. C. Cameron, J. Vac. Sci. Technol. A. 19, 1642 (2001).
35. R. B. H. Tahar and N. B. H. Tahar, J. Appl. Phys. 92, 4498 (2002).
36. H. Morkoç, Ümit Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (WILEY-VCH Verlg GbbH & Co. KGaA, Weinheim, 2009), p. 3.
37. J.-P. Lin and J.-M. Wu, Appl. Phys. Lett. 92, 134103 (2008).
38. W. M. Tsang, F. L. Wong, M. K. Fung, J. C. Chang, C. S. Lee and S. T. Lee, Thin Solid Films 517, 891 (2008).

Data & Media loading...


Article metrics loading...



Aluminum-doped ZnO thin films of high optical transmittance (∼ 84-100%) and low resistivity (∼ 2.3x10-2 Ωcm) have been prepared on glass substrate by the spin coating and subsequent annealing at 500°C for 1h in air or vacuum. Effect of aluminumdoping and annealing environment on morphology, optical transmittance and electrical resistivity of ZnO thin films has been studied with possible application as a transparent electrode in photovoltaic. The changes occurring due to aluminum addition include reduction in grain size, root mean square roughness, peak-valley separation, and sheet resistance with improvement in the optical transmittance to 84-100% in the visible range. The origin of low electrical resistivity lies in increase in i) electron concentration following aluminumdoping (being trivalent), formation of oxygen vacancies due to vacuum annealing, filling of cation site with additional zinc at solution stage itself and ii) carrier mobility.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd