Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3644937
1.
1. K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008).
http://dx.doi.org/10.1063/1.2936887
2.
2. P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009).
http://dx.doi.org/10.1088/0965-0393/17/8/084007
3.
3. H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.115216
4.
4. T. Y. Tan, U. Gösele, and S. Yu, Crit. Rev. in Sol. State and Mater. Sci. 17, 47 (1991).
http://dx.doi.org/10.1080/10408439108244631
5.
5. E. P. Zucker, A. Hashimoto, T. Fukunaga, and N. Watanabe, Appl. Phys. Lett. 54, 564 (1989).
http://dx.doi.org/10.1063/1.100932
6.
6. G. Bösker, N. A. Stolwijk, H.-G. Hettwer, A. Rucki, W. Jäger, and U. Södervall, Phys. Rev. B 52, 11927 (1995).
http://dx.doi.org/10.1103/PhysRevB.52.11927
7.
7. G. Bösker, N. A. Stolwijk, H. Mehrer, U. Södervall, and W. Jäger, J. Appl. Phys. 86, 791 (1999).
http://dx.doi.org/10.1063/1.370806
8.
8. H. Bracht, M. S. Norseng, E. E. Haller, and K. Eberl, Physica B 308-310, 831 (2001).
http://dx.doi.org/10.1016/S0921-4526(01)00817-1
9.
9. H. Bracht, private communication
10.
10. S. B. Zhang and J. E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).
http://dx.doi.org/10.1103/PhysRevLett.67.2339
11.
11. M.-A. Malouin, F. El-Mellouhi, and N. Mousseau, Phys. Rev. B 76, 045211 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.045211
12.
12. K. Levasseur-Smith and N. Mousseau, Eur. Phys. J. B 64, 165 (2008).
http://dx.doi.org/10.1140/epjb/e2008-00296-4
13.
13. This work is a condensed version of a paper originally placed online in January 2011 at (arXiv:1101.1135v2).
14.
14. M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler, Comput. Phys. Commun. 107, 187 (1997).
http://dx.doi.org/10.1016/S0010-4655(97)00117-3
15.
15. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
http://dx.doi.org/10.1103/PhysRevB.47.558
16.
16. G. Kresse, Ph.D. thesis, Technische Universität Wien (1993).
17.
17. G. Kresse and J. Furthmüller, Comput. Mat. Sci. 6, 15 (1996).
http://dx.doi.org/10.1016/0927-0256(96)00008-0
18.
18. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.11169
19.
19. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
http://dx.doi.org/10.1103/PhysRev.136.B864
20.
20. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
http://dx.doi.org/10.1103/PhysRevLett.45.566
21.
21. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.5048
22.
22. L. Kleinman and D. M. Bylander, Phys. Rev. Lett. 48, 1425 (1982).
http://dx.doi.org/10.1103/PhysRevLett.48.1425
23.
23. D. R. Hamann, Phys. Rev. B 40, 2980 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.2980
24.
24. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5188
25.
25. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
http://dx.doi.org/10.1103/PhysRevB.41.7892
26.
26. G. Kresse and J. Hafner, J. Phys.: Cond. Matt. 6, 8245 (1994).
http://dx.doi.org/10.1088/0953-8984/6/40/015
27.
27. M. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.3616
28.
28. H. Jónsson, G. Mills, and K. W. Jacobsen, “Classical and quantum dynamics in condensed phase systems,” ( World Scientific, 1998) Chap. 16, pp. 385404.
29.
29. G. Mills, H. Jónsson, and G. K. Schenter, Surf. Sci. 324, 305 (1995).
http://dx.doi.org/10.1016/0039-6028(94)00731-4
30.
30. F. D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944).
http://dx.doi.org/10.1073/pnas.30.9.244
31.
31. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).
http://dx.doi.org/10.1063/1.331665
32.
32. K. Momma and F. Izumi, J. Appl. Crystallog. 41, 653 (2008).
http://dx.doi.org/10.1107/S0021889808012016
33.
33. J. T. Schick, C. G. Morgan, and P. Papoulias, Phys. Rev. B 66, 195302 (Nov 2002).
http://dx.doi.org/10.1103/PhysRevB.66.195302
34.
34. A. F. Kohan, G. Ceder, D. Morgan, and C. G. Van de Walle, Phys. Rev. B 61, 15019 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.15019
35.
35. G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.4014
36.
36. C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95, 3851 (2004).
http://dx.doi.org/10.1063/1.1682673
37.
37. C. Freysoldt, J. Neugebauer, and C. G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.016402
38.
38. R. M. Nieminen, Topics Appl. Physics 104, 29 (2007).
http://dx.doi.org/10.1007/11690320
39.
39. G. A. Baraff and M. Schlüter, Phys. Rev. Lett. 55, 2340 (1985).
http://dx.doi.org/10.1103/PhysRevLett.55.2340
40.
40. G. A. Baraff and M. Schlüter, Phys. Rev. B 33, 7346 (1986).
http://dx.doi.org/10.1103/PhysRevB.33.7346
41.
41. Differences in the formation energies presented here and our previously published calculations33 are a result of having now evaluated the bulk arsenic structure within our own computations, rather than relying upon a previous calculation that used the same codes. This brings our formation energies into closer agreement with other work. For example, the neutral arsenic antisite formation energy in the arsenic-rich limit was stated to be 1.8 eV in our earlier work, and with the updated bulk arsenic formation energy it is now 1.3 eV, which agrees with the calculation due to Schultz et al.2 to within the expected precision of density functional theory.
42.
42. S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.235104
43.
43. P. A. Schultz, Phys. Rev. Lett. 96, 246401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.246401
44.
44. B. R. Tuttle and S. T. Pantelides, Phys. Rev. Lett. 101, 089701 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.089701
45.
45. P. A. Schultz, Phys. Rev. Lett. 101, 089702 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.089702
46.
46. G. A. Baraff and M. Schlüter, Phys. Rev. B 30, 1853 (1984).
http://dx.doi.org/10.1103/PhysRevB.30.1853
47.
47. K. A. Johnson and N. W. Ashcroft, Phys. Rev. B 58, 15548 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15548
48.
48. A. Becke and K. Edgecombe, J. Chem. Phys. 92, 5397 (1990), ISSN 0021-9606
http://dx.doi.org/10.1063/1.458517
49.
49. R. Wyckoff, Crystal Structures, Second Edition ( Wiley, New York, 1963).
50.
50. S. Yu, T. Y. Tan, and U. Gösele, J. Appl. Phys. 69, 3547 (1991).
http://dx.doi.org/10.1063/1.348497
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3644937
Loading
/content/aip/journal/adva/1/3/10.1063/1.3644937
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3644937
2011-09-20
2016-12-09

Abstract

A new diffusion path is identified for galliuminterstitials, which involves lower barriers than the barriers for previously identified diffusion paths [K. Levasseur-Smith and N. Mousseau, J. Appl. Phys. 103, 113502 (2008), P. A. Schultz and O. A. von Lilienfeld, Modelling and Simulation in Materials Science and Engineering 17, 084007 (2009)] for the charge states which dominate diffusion over most of the available range of Fermi energies. This path passes through the ⟨110⟩ gallium-gallium split interstitial configuration, and has a particularly low diffusion barrier of 0.35 eV for diffusion in the neutral charge state. As a part of this work, the character of the charge states for the galliuminterstitials which are most important for diffusion is investigated, and it is shown that the last electron bound to the neutral interstitial occupies a shallow hydrogenic bound state composed of conduction band states for the hexagonal interstitial and both tetrahedral interstitials. How to properly account for the contributions of such interstitials is discussed for density-functional calculations with a k-point mesh not including the conduction band edge point. Diffusion barriers for galliuminterstitials are calculated in all the charge states which can be important for a Fermi level anywhere in the gap, q = 0, +1, +2, and +3, for diffusion via the ⟨110⟩ gallium-gallium split interstitial configuration and via the hexagonal interstitial configuration. The lowest activation enthalpies over most of the available range of Fermi energies are found to correspond to diffusion in the neutral or singly positive state via the ⟨110⟩ gallium-gallium split interstitial configuration. It is shown that several different charge states and diffusion paths contribute significantly for Fermi levels within 0.2 eV above the valence band edge, which may help to explain some of the difficulties [H. Bracht and S. Brotzmann, Phys. Rev. B 71, 115216 (2005)] which have been encountered in fitting experimental results for heavily p-type, Ga-rich gallium arsenide by simply extending a model for galliuminterstitialdiffusion which has been used for less p-doped material.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3644937.html;jsessionid=1bWWWlKsORUg9mkp-Kz8wg1d.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3644937&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3644937&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3644937'
Right1,Right2,Right3,