Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. Marculescu, R. Marculescu, Z. H. Zamora, P. Stanley-Marbell, P. K. Khosla, S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, J. Grzyb, G. Troster, M. Jones, T. Martin, and Z. Nakad, Proc. IEEE 91, 1995 (2003).
2. Y. Qin, X. Wang, and Z. L. Wang, Nature 451, 809 (2008).
3. R. Bhattacharya, M. M. de Kok, and J. Zhou, Appl. Phys. Lett. 95, 223305 (2009).
4. R. Paradiso, G. Loriga, and N. Taccini, IEEE Trans. Inf. Technol. Biomed. 9, 337 (2005).
5. O. Amft and G. Tröster, IEEE Pervasive Comput. 8, 62 (2009).
6. M. Bachlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Giladi, and G. Troster, IEEE Trans. Inf. Technol. Biomed. 14, 436 (2010).
7. J. B. Lee and V. Subramanian, IEEE Trans. Electron Device 52, 269 (2005).
8. E. Bonderover and S. Wagner, IEEE Electron Device Lett. 25, 295 (2004).
9. M. Hamedi, R. Forchheimer, and O. Inganäs, Nat. Mater. 6, 357 (2007).
10. K. H. Cherenack, T. Kinkeldei, C. Zysset, and G. Tröster, IEEE Electron Device Lett. 31, 740 (2010).
11. S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010).
12. A. Chung, J. deen, J. S. Lee and M. Meyyappan, Nanotechnology 21, 412001 (2010).
13. C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng, IEEE Electron Device Lett. 28, 366 (2007).
14. L. Zhang, R. Huang, M. Zhu, S. Qin, Y. Kuang, D. Gao, C. Shi, and Y. Wang, IEEE Electron Device Lett. 31, 966 (2010).
15. L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, and Y.-K. Choi, IEEE Electron Device Lett. 29, 331 (2008).
16. W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, and C.-Y. Lu, IEEE Electron Device Lett. 31, 126 (2010).
17. Z. Fang, H. Y. Yu, W. J. Liu, Z. R. Wang, X. A. Tran, B. Gao, and J. F. Kang, IEEE Electron Device Lett. 31, 476 (2010).
18. J. W. Han and M. Meyyappan, Appl. Phys. Lett. 98, 192102 (2011).
19. J. W. Han and M. Meyyappan, Mater. Exp., In Press.
20. M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958).
21. T. Yu, X. Zhao, Z. X. Shen, Y. H. Wu, W. H. Su, J. Cryst. Growth 268, 590 (2004).
22. Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. R. L. Thong, C. H. Sow, Nanotechnology 16, 88 (2005).
23. A. Sawa, Mater. Today 11, 28 (2008).
24. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
25. A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, S. Kaza, Appl. Phys. Lett. 91, 123517 (2007).
26. R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, H. Hwang, Appl. Phys. Lett. 90, 042107 (2007).
27. A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, S. Kaza, Appl. Phys. Lett. 91, 123517 (2007).
28. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, Z. Lan, Appl. Phys. Lett. 92, 013503 (2008).
29. P. Zhou, H. B. Lv, M. Yin, L. Tang, Y. L. Song, T. A. Tang, Y. Y. Lin, A. Bao, A. Wu, S. Cai, H. Wu, C. Liang, M. H. Chi, J. Vac. Sci. Technol. B 26, 1030 (2008).
30. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, Z. Lan, Appl. Phys. Lett. 92, 013503 (2008).
31. W.-Y. Yang, W.-G. Kim, S.-W. Rhee, Thin Solid Films 517, 967 (2008).
32. S.-O. Kang, S. Hong, J. Choi, J.-S. Kim, I. Hwang, I.-S. Byun, K.-S. Yun, B. H. Park, Appl. Phys. Lett. 95, 092108 (2009).
33. C. H. Kim, Y. H. Jang, H. J. Hwang, Z. H. Sun, H. B. Moon, J. H. Cho, Appl. Phys. Lett. 94, 102107 (2009).
34. S.-Y. Wang, C.-W. Huang, D.-Y. Lee, T.-Y. Tseng, and T.-C. Chang, J. Appl. Phys. 108, 114110 (2010).
35. S. Kim, K. P. Biju, M. Jo, S. Jung, J. Park, J. Lee, W. Lee, J. Shin, S. Park, and H. Hwang, IEEE Electron Device Lett. 32, 671 (2011).
36. H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y , Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, Appl. Phys. Lett. 94, 213502 (2009).
37. H. Lv, T. Tang, Appl. Phys. A 102, 1015 (2011).
38. M. Wang, W. J. Luo, Y. L. Wang, L. M. Yang, W. Zhu, P. Zhou, J. H. Yang, X. G. Gong, and Y. Y. Lin, IEEE Symp. on VLSI Tech . 2010, 89.

Data & Media loading...


Article metrics loading...



A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd