1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Copper oxide resistive switching memory for e-textile
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3645967
1.
1. D. Marculescu, R. Marculescu, Z. H. Zamora, P. Stanley-Marbell, P. K. Khosla, S. Park, S. Jayaraman, S. Jung, C. Lauterbach, W. Weber, T. Kirstein, D. Cottet, J. Grzyb, G. Troster, M. Jones, T. Martin, and Z. Nakad, Proc. IEEE 91, 1995 (2003).
http://dx.doi.org/10.1109/JPROC.2003.819612
2.
2. Y. Qin, X. Wang, and Z. L. Wang, Nature 451, 809 (2008).
http://dx.doi.org/10.1038/nature06601
3.
3. R. Bhattacharya, M. M. de Kok, and J. Zhou, Appl. Phys. Lett. 95, 223305 (2009).
http://dx.doi.org/10.1063/1.3269907
4.
4. R. Paradiso, G. Loriga, and N. Taccini, IEEE Trans. Inf. Technol. Biomed. 9, 337 (2005).
http://dx.doi.org/10.1109/TITB.2005.854512
5.
5. O. Amft and G. Tröster, IEEE Pervasive Comput. 8, 62 (2009).
http://dx.doi.org/10.1109/MPRV.2009.32
6.
6. M. Bachlin, M. Plotnik, D. Roggen, I. Maidan, J. M. Hausdorff, N. Giladi, and G. Troster, IEEE Trans. Inf. Technol. Biomed. 14, 436 (2010).
http://dx.doi.org/10.1109/TITB.2009.2036165
7.
7. J. B. Lee and V. Subramanian, IEEE Trans. Electron Device 52, 269 (2005).
http://dx.doi.org/10.1109/TED.2004.841331
8.
8. E. Bonderover and S. Wagner, IEEE Electron Device Lett. 25, 295 (2004).
http://dx.doi.org/10.1109/LED.2004.826537
9.
9. M. Hamedi, R. Forchheimer, and O. Inganäs, Nat. Mater. 6, 357 (2007).
http://dx.doi.org/10.1038/nmat1884
10.
10. K. H. Cherenack, T. Kinkeldei, C. Zysset, and G. Tröster, IEEE Electron Device Lett. 31, 740 (2010).
http://dx.doi.org/10.1109/LED.2010.2048993
11.
11. S. J. Kim and J. S. Lee, Nano Lett. 10, 2884 (2010).
http://dx.doi.org/10.1021/nl1009662
12.
12. A. Chung, J. deen, J. S. Lee and M. Meyyappan, Nanotechnology 21, 412001 (2010).
http://dx.doi.org/10.1088/0957-4484/21/41/412001
13.
13. C.-Y. Lin, C.-Y. Wu, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, and T.-Y. Tseng, IEEE Electron Device Lett. 28, 366 (2007).
http://dx.doi.org/10.1109/LED.2007.894652
14.
14. L. Zhang, R. Huang, M. Zhu, S. Qin, Y. Kuang, D. Gao, C. Shi, and Y. Wang, IEEE Electron Device Lett. 31, 966 (2010).
http://dx.doi.org/10.1109/LED.2010.2052091
15.
15. L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, and Y.-K. Choi, IEEE Electron Device Lett. 29, 331 (2008).
http://dx.doi.org/10.1109/LED.2008.918253
16.
16. W. C. Chien, Y. C. Chen, E. K. Lai, Y. D. Yao, P. Lin, S. F. Horng, J. Gong, T. H. Chou, H. M. Lin, M. N. Chang, Y. H. Shih, K. Y. Hsieh, R. Liu, and C.-Y. Lu, IEEE Electron Device Lett. 31, 126 (2010).
http://dx.doi.org/10.1109/LED.2009.2037593
17.
17. Z. Fang, H. Y. Yu, W. J. Liu, Z. R. Wang, X. A. Tran, B. Gao, and J. F. Kang, IEEE Electron Device Lett. 31, 476 (2010).
http://dx.doi.org/10.1109/LED.2010.2041893
18.
18. J. W. Han and M. Meyyappan, Appl. Phys. Lett. 98, 192102 (2011).
http://dx.doi.org/10.1063/1.3589374
19.
19. J. W. Han and M. Meyyappan, Mater. Exp., In Press.
20.
20. M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York, 1958).
21.
21. T. Yu, X. Zhao, Z. X. Shen, Y. H. Wu, W. H. Su, J. Cryst. Growth 268, 590 (2004).
http://dx.doi.org/10.1016/j.jcrysgro.2004.04.097
22.
22. Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. R. L. Thong, C. H. Sow, Nanotechnology 16, 88 (2005).
http://dx.doi.org/10.1088/0957-4484/16/1/018
23.
23. A. Sawa, Mater. Today 11, 28 (2008).
http://dx.doi.org/10.1016/S1369-7021(08)70119-6
24.
24. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
http://dx.doi.org/10.1038/nmat2023
25.
25. A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, S. Kaza, Appl. Phys. Lett. 91, 123517 (2007).
http://dx.doi.org/10.1063/1.2789678
26.
26. R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan, H. Hwang, Appl. Phys. Lett. 90, 042107 (2007).
http://dx.doi.org/10.1063/1.2436720
27.
27. A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, S. Kaza, Appl. Phys. Lett. 91, 123517 (2007).
http://dx.doi.org/10.1063/1.2789678
28.
28. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, Z. Lan, Appl. Phys. Lett. 92, 013503 (2008).
http://dx.doi.org/10.1063/1.2828864
29.
29. P. Zhou, H. B. Lv, M. Yin, L. Tang, Y. L. Song, T. A. Tang, Y. Y. Lin, A. Bao, A. Wu, S. Cai, H. Wu, C. Liang, M. H. Chi, J. Vac. Sci. Technol. B 26, 1030 (2008).
http://dx.doi.org/10.1116/1.2927922
30.
30. A. Chen, S. Haddad, Y. C. Wu, T. N. Fang, S. Kaza, Z. Lan, Appl. Phys. Lett. 92, 013503 (2008).
http://dx.doi.org/10.1063/1.2828864
31.
31. W.-Y. Yang, W.-G. Kim, S.-W. Rhee, Thin Solid Films 517, 967 (2008).
http://dx.doi.org/10.1016/j.tsf.2008.08.184
32.
32. S.-O. Kang, S. Hong, J. Choi, J.-S. Kim, I. Hwang, I.-S. Byun, K.-S. Yun, B. H. Park, Appl. Phys. Lett. 95, 092108 (2009).
http://dx.doi.org/10.1063/1.3202394
33.
33. C. H. Kim, Y. H. Jang, H. J. Hwang, Z. H. Sun, H. B. Moon, J. H. Cho, Appl. Phys. Lett. 94, 102107 (2009).
http://dx.doi.org/10.1063/1.3098071
34.
34. S.-Y. Wang, C.-W. Huang, D.-Y. Lee, T.-Y. Tseng, and T.-C. Chang, J. Appl. Phys. 108, 114110 (2010).
http://dx.doi.org/10.1063/1.3518514
35.
35. S. Kim, K. P. Biju, M. Jo, S. Jung, J. Park, J. Lee, W. Lee, J. Shin, S. Park, and H. Hwang, IEEE Electron Device Lett. 32, 671 (2011).
http://dx.doi.org/10.1109/LED.2011.2114320
36.
36. H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, T. Tang, Y , Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, and M. H. Chi, Appl. Phys. Lett. 94, 213502 (2009).
http://dx.doi.org/10.1063/1.3142392
37.
37. H. Lv, T. Tang, Appl. Phys. A 102, 1015 (2011).
http://dx.doi.org/10.1007/s00339-011-6281-8
38.
38. M. Wang, W. J. Luo, Y. L. Wang, L. M. Yang, W. Zhu, P. Zhou, J. H. Yang, X. G. Gong, and Y. Y. Lin, IEEE Symp. on VLSI Tech . 2010, 89.
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3645967
Loading
/content/aip/journal/adva/1/3/10.1063/1.3645967
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3645967
2011-09-21
2014-09-03

Abstract

A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3645967.html;jsessionid=1nw9d9ogxw1hv.x-aip-live-06?itemId=/content/aip/journal/adva/1/3/10.1063/1.3645967&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Copper oxide resistive switching memory for e-textile
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3645967
10.1063/1.3645967
SEARCH_EXPAND_ITEM