Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE, 97, 11661185 (2009).
2. M. Hilbert and P. López, “The world's technological capacity to store, communicate, and compute information,” Science, 332, 6065 (2011).
3. W. Franz, “Influence of an electric field on an optical absorption edge,” Z. Naturforsch, 13a, 484 (1958).
4. L. V. Keldysh, “The effect of a strong electric field on the optical properties of insulating crystals,” Zh. Eksp. Teor. Fiz., 34, 1138 (1958).
5. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Band-edge electroabsorption in quantum well structures: The quantum-confined Stark effect,” Phys. Rev. Lett., 53, 21732176 (1984).
6. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nature Photonics, 2, 433437 (2008).
7. Y. Luo, J. Simons, J. Costa, I. Shubin, W. Chen, B. Frans, M. Robinson, R. Shafiiha, S. Liao, N.-N. Feng, X. Zheng, G. Li, J. Yao, H. Thacker, M. Asghari, K. Goossen, K. Raj, A. V. Krishnamoorthy, and J. E. Cunningham, “Experimental studies of the Franz-Keldysh effect in CVD grown GeSi epi on SOI,” Proc. of SPIE, 7944 (2011).
8. Y.-H. Kuo, Y. K. Lee, S. R. Y. Ge, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined stark effect in germanium quantum-well structures on silicon,” Nature, 437, 13341336 (2005).
9. Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si for optical modulators,” IEEE J. Selected Topics Quant. Electron., 12, 15031513 (2006).
10. J. E. Roth, O. Fidaner, R. K. Schaevitz, Y.-H. Kuo, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Optical modulator on silicon employing germanium quantum wells,” Opt. Express, 15, 58515859 (2007).
11. J. E. Roth, O. Fidaner, E. H. Edwards, R. K. Schaevitz, Y.-H. Kuo, N. C. Helman, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “C-band side-entry Ge quantum-well electroabsorption modulator on SOI operating at 1 V swing,” Electron. Lett., 44, 4950 (2008).
12. Y. Rong, Y. Ge, Y. Huo, M. Fiorentino, M. R. T. Tan, T. I. Kamins, T. J. Ochalski, G. Huyet, and J. S. Harris, “Quantum-confined Stark effect in Ge/SiGe quantum wells on Si,” IEEE J. Selected Topics Quant. Electron., 16, 8592 (2010).
13. S. Ren, Y. Rong, S. A. Claussen, R. K. Schaevitz, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “A Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides,” in IEEE Group IV Photonics (London, England, 2011) p. WA3.
14. G. G. Macfarlane and V. Roberts, “Infrared absorption of germanium near the lattice edge,” Phys. Rev., 97, 17141716 (1955).
15. G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Fine structure in the absorption-edge spectrum of Ge,” Phys. Rev., 108, 13771383 (1957).
16. G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Fine structure in the absorption-edge spectrum of Si,” Phys. Rev., 111, 12451254 (1958).
17. R. Braunstein, A. R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev., 109, 695710 (1958).
18. G. G. Macfarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Exciton and phonon effects in the absorption spectra of germanium and silicon,” J. Phys. Chem. Solids, 8, 388392 (1959).
19. A. Frova, P. Handler, F. A. Germano, and D. E. Aspnes, “Electro-absorption effects and the band edges of silicon and germanium,” Phys. Rev, 145, 575583 (1966).
20. T. Nishino, M. Takeda, and Y. Hamakawa, “Indirect exciton absorption in germanium,” J. Phys. Soc. Jap, 37, 10161023 (1974).
21. M. Bonfanti, E. Grilli, M. Guzzi, M. Virgilio, G. Grosso, D. Chrastina, G. Isella, H. von Känel, and A. Neels, “Optical transitions in Ge/SiGe multiple quantum wells with Ge-rich barriers,” Phys. Rev. B, 78, 041407 (2008).
22. R. K. Schaevitz, E. H. Edwards, J. E. Roth, E. Fei, Y. Rong, P. Wahl, T. I. Kamins, J. S. Harris, and D. A. B. Miller, “Simple electroabsorption calculator for designing 1310nm and 1550nm modulators in germanium quantum wells,” (Aug. 1, 2011), submitted for publication
23. C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, 34, 56215634 (1986).
24. C. G. Van de Walle, “Band lineups and deformation potentials in the model-solid theory,” Phys. Rev. B, 39, 18711883 (1989).
25. Y. Busby, M. D. Seta, G. Capellini, F. Evangelisti, M. Ortolani, M. Virgilio, G. Grosso, G. Pizzi, P. Calvani, S. Lupi, M. Nardone, G. Nicortra, and C. Spinella, “Near- and far-infrared absorption and electronic structure of Ge-SiGe multiple quantum wells,” Phys. Rev. B, 82 (2010).
26. S. Zwerdling, B. Lax, L. M. Roth, and K. J. Button, “Exciton and magneto-absorption of the direct and indirect transitions in germanium,” Phys. Rev., 114, 8089 (1959).
27. C. D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP,” J. Electrochem Soc., 122, 11331141 (1975).
28. S. Krishnamurthy, A. Sher, and A.-B. Chen, “Generalized Brook's formula and the electron mobility in SixGe1 − x alloys,” Appl. Phys. Lett., 47, 160162 (1985).
29. L. Yang, J. R. Watling, R. C. W. Wilkins, M. Boriçi, J. R. Barker, A. Asenov, and S. Roy, “Si/SiGe heterostructure parameters for device simulations,” Semicond. Sci. Technol., 19, 11741182 (2004).
30. W. Bludau, A. Onton, and W. Heinke, “Temperature dependence of the band gap of silicon,” J. Appl. Phys., 45, 18461848 (1974).
31. P. A. Dafesh and K. L. Wang, “Temperature dependence of the E0 transitions in bulk Ge and a Ge-rich (Si)m/(Ge)n superlattice,” Phys. Rev. B, 45, 17121718 (1992).
32. D. E. Aspnes and A. A. Studna, “Direct observation of the E0 and E0 + Δ0 transitions in silicon,” Solid State Commun., 11, 13751378 (1972).
33. R. K. Schaevitz, J. E. Roth, S. Ren, O. Fidaner, and D. A. B. Miller, “Material properties of Si-Ge/Ge quantum wells,” IEEE J. Selected Topics Quant. Electron., 14, 10821089 (2008).
34. M. M. Rieger and P. Vogl, “Electronic-band parameters in strained Si1 − xGex alloys on Si1 − yGey substrates,” Phys. Rev. B, 48, 276287 (1993).
35. L. H. Hall, J. Bardeen, and F. J. Blatt, “Infrared absorption spectrum of germanium,” Phys. Rev., 95, 559560 (1954).
36. G. G. Macfarlane and V. Roberts, “Infrared absorption of silicon near the lattice edge,” Phys. Rev., 98, 18651866 (1955).
37. R. J. Elliot, “Intensity of optical absorption by excitons,” Phys. Rev., 108, 13841389 (1957).

Data & Media loading...


Article metrics loading...



Germanium has become a promising material for creating CMOS-compatible optoelectronic devices, such as modulators and detectors employing the Franz-Keldysh effect (FKE) or the quantum-confined Stark effect(QCSE), which meet strict energy and density requirements for future interconnects. To improve Ge-based modulator design, it is important to understand the contributions to the insertion loss (IL). With indirect absorption being the primary component of IL, we have experimentally determined the strength of this loss and compared it with theoretical models. For the first time, we have used the more sensitive photocurrent measurements for determining the effective absorption coefficient in our Ge/SiGe quantum well material employing QCSE. This measurement technique enables measurement of the absorption coefficient over four orders of magnitude. We find good agreement between our thin Gequantum wells and the bulk material parameters and theoretical models. Similar to bulk Ge, we find that the 27.7 meV LA phonon is dominant in these quantum confined structures and that the electroabsorption profile can be predicted using the model presented by Frova, Phys. Rev., 145 (1966).


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd