Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. Horowitz, and M. S. Feld, “Raman spectroscopy for non-invasive glucose measurements,” Journal of Biomedical Optics 10, 031114 (2005).
2. A. Mahadevan-Jansen, M. F. Mitchell, N. Ramanujam, U. Utzinger, and R. Richards-Kortum, “Development of a fiber optic probe to measure NIR Raman spectra of cervical tissue in vivo,” Photochemistry and Photobiology 68, 427431 (1998).
3. J. T. Motz, M. Hunter, L. H. Galindo, J. A. Gardecki, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Optical fiber probe for biomedical Raman spectroscopy,” Applied Optics 43, 542554 (2004).
4. K. Tanaka, M. T. T. Pacheco, J. F. Brennan III, I. Itzkan, A. J. Berger, R. R. Dasari, and M. S. Feld, “Compound parabolic concentrator probe for efficient light collection in spectroscopy of biological tissue,” Applied Optics 35, 758763 (1996).
5. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” Journal of Biomedical Optics 8, 121147 (2003).
6. R. Winston, “Nonimaging Optics,” Solar Today 6, 2629 (1992).
7. T. J. Brukilacchio, “LED illuminator with retro reflector,” (U.S. Patent 0053184A1, 2007).
8. B. Yang, M. D. Morris, and H. Owen, “Holographic notch filter for low-wavenumber Stokes and anti-Stokes Raman spectroscopy,” Applied Spectroscopy 45, 153336 (1991).
9. J. M. Tedesco, H. Owen, D. M. Pallister, and M. D. Morris, “Principles and spectroscopic applications of volume holographic optics,” Analytical Chemistry 65, 441A449A (1993).
10. W. T. Welford and R. Winston, High Collection Nonimaging Optics (Academic Press, New York, NY, 1989).
11. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic Press, Burlington, MA, 2005).
12. Narcus, “Bright electroless plating process producing two-layer nickel coatings on dielectric subtrates,” (U.S. Patent 4160049, 1979).
13. J. T. Motz, M. Fitzmaurice, A. Miller, S. J. Gandhi, A. S. Haka, L. H. Galindo, R. R. Dasari, J. R. Kramer, and M. S. Feld, “In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque,” Journal of Biomedical Optics 11, 021003 (2006).
14. A. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proceedings of the National Academy of Sciences of the United States of America 102, 1237112376 (2005).
15. P. Matousek and A. W. Parker, “Bulk Raman analysis of pharmaceutical tablets,” Applied Spectroscopy 60, 13531357 (2006).
16. P. Matousek and N. Stone, “Prospects for the diagnosis of breast cancer by noninvasive probing of calcifications using transmission Raman spectroscopy,” Journal of Biomedical Optics 12, 024008 (2007).
17. M. V. Schulmerich, J. H. Cole, K. A. Dooley, M. D. Morris, J. M. Kreider, S. A. Goldstein, S. Srinivasan, and B. W. Pogue, “Noninvasive Raman tomographic imaging of canine bone tissue,” Journal of Biomedical Optics 13, 020506 (2008).
18. S. N. Thennadil, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti, and M. B. Block, “Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels,” Diabetes Technology and Therapeutics 3, 35765 (2001).
19. W. C. Shih, K. L. Bechtel, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part I: theory and simulations,” Optics Express 16, 1272636 (2008).
20. K. L. Bechtel, W. C. Shih, and M. S. Feld, “Intrinsic Raman spectroscopy for quantitative biological spectroscopy Part II: experimental applications,” Optics Express 16, 1273745 (2008).
21. I. Barman, G. P. Singh, R. R. Dasari, and M. S. Feld, “Turbidity-corrected Raman spectroscopy for blood analyte detection,” Analytical Chemistry 81, 42334240 (2009).
22. O. R. Scepanovic, Z. Volynskaya, C. R. Kong, L. Galindo, R. R. Dasari, and M. S. Feld, “A multimodal spectroscopy system for real-time disease diagnosis,” Review of Scientific Instruments 80, 043103 (2009).
23. M. L. Myrick and S. M. Angel, “Elimination of background in fiber-optic Raman measurements,” Applied Spectroscopy 44, 565570 (1990).
24. N. Stone, M. Consuelo, H. Prieto, P. Crow, J. Uff, and A. W. Ritchie, “The use of Raman spectroscopy to provide an estimation of the gross biochemistry associated with urological pathologies,” Analytical and Bioanalytical Chemistry 387, 16571668 (2006).
25. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” British Journal of Cancer 98, 457465 (2008).
26. O. R. Scepanovic, M. Fitzmaurice, J. A. Gardecki, G. O. Angheloiu, S. Awasthi, J. T. Motz, J. R. Kramer, R. R. Dasari, and M. S. Feld, “Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy,” Journal of Biomedical Optics 11, 021007 (2006).
27. H. P. Buschman, J. T. Motz, G. Deinum, T. J. Romer, M. Fitzmaurice, J. R. Kramer, A. van der Laarse, A. V. Bruschke, and M. S. Feld, “Diagnosis of human coronary atherosclerosis by morphology-based Raman spectroscopy.” Cardiovascular Pathology 10, 5968 (2001).
28. A. J. Berger, I. Itzkan, and M. S. Feld, “Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy,” Spectrochimica Acta Part A-Molecular and Biomolecular Spectroscopy 53, 287292 (1997).
29. R. L. McCreery, Raman Spectroscopy for Chemical Analysis, edited by J. D. Winefordner, Chemical Analysis, Vol. 157 (Wiley-Interscience, 2000).
30. R. G. Brereton, Applied Chemometrics for Scientists (John Wiley & Sons Ltd., Chichester, West Sussex, England, 2007).
31. H. Wold, “Multivariate Analysis,” (Academic Press, 1966) New York Estimation of principal components and related models by iterative least squares, pp. 391420.
32. W. P. Carey, K. R. Beebe, E. Sanchez, P. Geladi, and B. Kowalski, “Chemometric analysis of multisensor arrays,” Sensors and Actuators 9, 223234 (1986).
33. H. Drucker, C. J. C. Burges, L. Kaufman, A. Smola, and V. Vapnik, “Support vector regression machines,” in Advances in Neural Information Processing Systems 9 (MIT Press, 1997) pp. 155161.
34. U. Thissen, B. Ustun, W. J. Melssen, and L. M. C. Buydens, “Multivariate calibration with least-squares support vector machines,” Analytical Chemistry 76, 30993105 (2004).
35. I. Barman, C. R. Kong, N. C. Dingari, R. R. Dasari, and M. S. Feld, “Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose,” Analytical Chemistry 82, 97199726 (2010).
36. W. L. Clarke, D. Cox, L. A. Gonder-Frederick, W. Carter, and S. L. Pohl, “Evaluating clinical accuracy of systems for self-monitoring of blood glucose.” Diabetes Care 10, 622628 (1987).

Data & Media loading...


Article metrics loading...



Due to its high chemical specificity, Raman spectroscopy has been considered to be a promising technique for non-invasive disease diagnosis. However, during Raman excitation, less than one out of a million photons undergo spontaneous Raman scattering and such weakness in Raman scattered light often require highly efficient collection of Raman scattered light for the analysis of biological tissues. We present a novel non-imaging optics based portable Raman spectroscopy instrument designed for enhanced light collection. While the instrument was demonstrated on transdermal blood glucose measurement, it can also be used for detection of other clinically relevant blood analytes such as creatinine, urea and cholesterol, as well as other tissue diagnosis applications. For enhanced light collection, a non-imaging optical element called compound hyperbolic concentrator (CHC) converts the wide angular range of scatteredphotons (numerical aperture (NA) of 1.0) from the tissue into a limited range of angles accommodated by the acceptance angles of the collection system (e.g., an optical fiber with NA of 0.22). A CHC enables collimation of scattered light directions to within extremely narrow range of angles while also maintaining practical physical dimensions. Such a design allows for the development of a very efficient and compact spectroscopy system for analyzing highly scattering biological tissues. Using the CHC-based portable Raman instrument in a clinical research setting, we demonstrate successful transdermal blood glucose predictions in human subjects undergoing oral glucose tolerance tests.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd