1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Mechanism of the performance improvement of TiO2-x -based field-effect transistor using SiO2 as gate insulator
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3646525
1.
1. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahemann, Chem. Rev. (Washington, D.C.) 95, 69 (1995).
2.
2. M. Grätzel, Nature,(London) 414, 338 (2001).
http://dx.doi.org/10.1038/35104607
3.
3. D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453, 80 (2008).
http://dx.doi.org/10.1038/nature06932
4.
4. H. Akinaga and H. Shima, Proc. IEEE, 98, 2237 (2010).
http://dx.doi.org/10.1109/JPROC.2010.2070830
5.
5. S.-D. Mo and W. Y. Ching, Phys. Rev. B 51, 13023 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.13023
6.
6. M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341 (1993).
http://dx.doi.org/10.1021/cr00017a016
7.
7. J. Sasaki, N. L. Peterson, and K. Hoshino, J. Phys. Chem. Solids 46, 1267 (1985).
http://dx.doi.org/10.1016/0022-3697(85)90129-5
8.
8. S. Na-Phattalung, M. F. Smith, K. Kim, M.-H. Du, S.-H. Wei, S. B. Zhang, and S. Limpijumnong, Phys. Rev. B 73, 125205 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.125205
9.
9. H. Akinaga and H. Shima: Proc. IEEE 98 (2010) 2237.
http://dx.doi.org/10.1109/JPROC.2010.2070830
10.
10. N. Zhong, H. Shima, and H. Akinaga, Jpn. J. Appl. Phys. Lett. 48, 05DF03 (2009).
http://dx.doi.org/10.1143/JJAP.48.05DF03
11.
11. P. H. Wöbkenberg, T. Ishwara, J. Nelson, D. D. C. Bradley, S. A. Haque, and T. D. Anthopoulos, Appl. Phys. Lett. 96, 082116 (2010).
http://dx.doi.org/10.1063/1.3330944
12.
12. W. S. Shih, S. J. Young, L. W. Ji, W. Water, and H. W. Shiu, J. Electrochem. Soc. 158, H609 (2011).
http://dx.doi.org/10.1149/1.3561271
13.
13. K. H. Choi and H. K. Kim, Electrochem. Solid ST. 14, H314 (2011).
http://dx.doi.org/10.1149/1.3589983
14.
14. J. W. Park, D. Lee, H. Kwon, and S. Yoo, IEEE Electron Device Lett. 30, 362 (2009).
http://dx.doi.org/10.1109/LED.2009.2013647
15.
15. L. C. K. Liau and W. W. Chou, Semicond. Sci. Technol. 24, 055007 (2009).
http://dx.doi.org/10.1088/0268-1242/24/5/055007
16.
16. N. Zhong, H. Shima, and H. Akinaga, Appl. Phys. Lett. 96, 0842107 (2010).
17.
17. H. Shima, N. Zhong, and H. Akinaga, Appl. Phys. Lett. 94, 082905 (2009).
http://dx.doi.org/10.1063/1.3068754
18.
18. G. Lassaletta, A. Fernández, J. P. Espinós, and A. R. González-Elipe, J. Phys. Chem. 99, 1484 (1995).
http://dx.doi.org/10.1021/j100005a019
19.
19. G. M. Ingo, S. Dirè and F. Babonneau, Appl. Sur. Sci. 70, 230 (1993).
http://dx.doi.org/10.1016/0169-4332(93)90433-C
20.
20. L. Soriano, G. G. Fuentes, C. Quirós, J. F. Trigo, J. M. Sanz, P. R. Bresser, and A. R. González-Elipe, Langmuir 16, 7066 (2000).
http://dx.doi.org/10.1021/la000330x
21.
21. J. Abad, C. Gonzalez, P. L. de Andres, and E. Roman, Phys. Rev. B 82, 165420 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165420
22.
22. S. M. Mukhopadhyay and S. H. Garofalini, J. Non-Cryst. Solids 126, 202 (1990).
http://dx.doi.org/10.1016/0022-3093(90)90820-C
23.
23. J. Strunk, W. C. Vining, and A. T. Bell, J. Phys. Chem. C 114, 16937 (2010).
http://dx.doi.org/10.1021/jp100104d
24.
24. J. W. Park, S. W. Han, N. Jeon, J. Jang and S. Yoo, IEEE Electron Device Lett. 29, 1319 (2008).
http://dx.doi.org/10.1109/LED.2008.2005737
25.
25. J. W. Park, D. Lee, and S. Yoo, IEEE Electron Device Lett. 29, 724 (2008).
http://dx.doi.org/10.1109/LED.2008.2000608
26.
26. T. Ohsaka, F. Izumi, and Y. Fujiki, J. Raman Spec. 7, 321 (1978).
http://dx.doi.org/10.1002/jrs.1250070606
27.
27. J. Abad, C. Gonzalez, P. L. de Andres, and E. Roman, Phys. Rev. B 82, 165420 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.165420
28.
28. G. M. Ingo, S. Dirè and F. Babonneau, Appl. Sur. Sci. 70, 230 (1993).
http://dx.doi.org/10.1016/0169-4332(93)90433-C
29.
29. E. Stoyanov, F. Langenhorst, and G. Steinle-Neuman, American Mineralogist 92, 577 (2007).
http://dx.doi.org/10.2138/am.2007.2344
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3646525
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Photograph of the prepared TiO2-x FET; (b) Schematic device structure of TiO2-x FET in a top-contact configuration. (The channel length (L) and width (W) are 10 and 100 μm, respectively. Al is used as gate, source and drain electrodes, and gate insulator is SiO2 with a thickness of 150nm.)

Image of FIG. 2.

Click to view

FIG. 2.

(a) Output and (b) Transfer characteristics of the as prepared FETs.

Image of FIG. 3.

Click to view

FIG. 3.

XPS spectra of O 1s spectra for the as prepared TiO2-x /SiO2 (insert: the structure of the measured sample, TiO2-x layer was deposited on SiO2/Si substrate with a thickness of 5nm.)

Image of FIG. 4.

Click to view

FIG. 4.

(a) I d -V g curves of the as prepared (V d =15V), VA200 (V d =20V), and VA300 (V d =20V), (b) I d -V d curves of VA300 FETs.

Image of FIG. 5.

Click to view

FIG. 5.

The dependence of mobility (μ) on Vg for the as prepared and VA300 FETs.

Image of FIG. 6.

Click to view

FIG. 6.

(a) Raman Spectra for the as prepared, VA200 and VA300 TiO2-x thin films; (b) HREM cross-section images of VA300 TiO2-x thin films.

Image of FIG. 7.

Click to view

FIG. 7.

Ti L 3,2 EELS profile across from (a) the as prepared and (b) VA300 to SiO2 layer. The corresponding measured points are shown in the insert TEM micrographs. The shape of the spectra is the same from 1# to 9# in the as prepared samples, which contain two broad peaks. In VA300, the two broad peaks split into four components from 5# to 9#.

Image of FIG. 8.

Click to view

FIG. 8.

Schematic bond structure of TiO2-x /SiO2 interface of (a) the as prepared; (b) VA300 samples.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3646525
2011-09-23
2014-04-24

Abstract

RF magnetron sputtered titanium oxide (TiO2-x ) thin films were used as active channel layer to fabricate field-effect transistors(FETs). In the as-prepared FETs, poor FET performance was found, with a low on-to-off current ratio of ∼500 and a high sub-threshold slope. It is attributed the existence of Si-O-Ti cross-linking bonding at TiO2-x /SiO2interface, which was probed by X-ray Photoelectron Spectroscopy(XPS) measurement. A remark improvement of sub-threshold slope and on-to-off current ratio was observed due to post annealing in vacuum at 300 °C for 30min. By using the electron energy loss spectroscope (EELS) analysis, oxidization of TiO2-x layer closing to SiO2 layer region was found, suggesting that Si-O-Ti cross-linking bonding at TiO2-x /SiO2interface breaks due to post annealing treatment.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3646525.html;jsessionid=j7p084ahllvk.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3646525&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Mechanism of the performance improvement of TiO2-x-based field-effect transistor using SiO2 as gate insulator
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3646525
10.1063/1.3646525
SEARCH_EXPAND_ITEM