1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3646527
1.
1. M. Toulemonde, C. Dufour, E. Paumier, Phys. Rev. B 46, 14362 (1992).
http://dx.doi.org/10.1103/PhysRevB.46.14362
2.
2. M. Toulemonde, C. Dufour, E. Paumier, Acta Phys. Polonica A 109, 311 (2006).
3.
3. H. G. Gehrke, A. K. Nix, J. Krauser, C. Trautmann, A. Weidinger and H. Hofsäss, J. Appl. Phys. 107, 094305 (2010).
http://dx.doi.org/10.1063/1.3354093
4.
4. M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, A. Weidinger, Nucl. Instr. Meth. B 216, 1 (2004).
http://dx.doi.org/10.1016/j.nimb.2003.11.013
5.
5. A. Meftah, F. Brisard, J. F. Constantini, E. Dooryhee, M. Hage-Ali, M Hervieu, J. P Stoquert, F. Studer, M. Toulemonde, Phys. Rev. B 49, 12457 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.12457
6.
6. G. Szenes, Z. E. Horváth, B. Pécz, F. Pászti, and L. Tóth, Phys. Rev. B 65, 045206 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.045206
7.
7. B. Canut, A. Benyagoub, G. Marest, A. Meftah, N. Moncoffre, S. M. M. Ramos, F. Studer, P. Thevenard, M. Toulemonde, Phys. Rev. B 51, 12194 (1995).
http://dx.doi.org/10.1103/PhysRevB.51.12194
8.
8. H. R. Kokabi, F. Studer, M. Toulemonde, Nucl. Instr. Meth B 111, 76 (1996).
http://dx.doi.org/10.1016/0168-583X(95)01265-6
9.
9. S. Meillon, F. Studer, M. Hervieu, H. Pascard, Nucl. Instr. Meth. B 107, 363 (1997).
http://dx.doi.org/10.1016/0168-583X(95)00843-8
10.
10. H. R. Kokabi, F. Studer, Nucl. Instr. Meth. B 124, 47 (1997).
http://dx.doi.org/10.1016/S0168-583X(96)00787-2
11.
11. J. M. Costantini, F. Brisard, A. Meftah, M. Toulemonde, F. Studer, Nucl. Instr. Meth. B 106, 567 (1995).
http://dx.doi.org/10.1016/0168-583X(95)00771-7
12.
12. M. Waiblinger, Ch. Sommerhalter, B. Pietzak, J. Krauser, B. Mertesacker, M. Ch. Lux-Steiner, S. Klaumünzer, A. Weidinger, C. Ronning, H. Hofsäss, Appl. Phys. A 69, 239 (1999).
http://dx.doi.org/10.1007/s003390050996
13.
13. D. Schwen, C. Ronning, H. Hofsäss, H. Zollondz, A. Weidinger, C. Trautmann, Diam. Relat. Mater. 13, 1032 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.11.039
14.
14. A. Nix, D. Schwen, C. Ronning, J. Krauser, C. Trautmann, H. Hofsäss, Rev. Adv. Mat. Sci. 15, 192 (2007).
15.
15. D. Schwen, E. M. Bringa, Nucl. Instr. Meth B 256, 187 (2007).
http://dx.doi.org/10.1016/j.nimb.2006.12.001
16.
16. J.-H. Zollondz, D. Schwen, A.-K. Nix, C. Trautmann, J. Berthold, J. Krauser, H. Hofsäss, Mat. Sci. Eng. C 26, 1171 (2006).
http://dx.doi.org/10.1016/j.msec.2005.09.107
17.
17. J. Krauser, A.-K. Nix, H.-G. Gehrke, H. Hofsäss, C. Trautmann, A. Weidinger, New J. Phys. 13 083023 (2011).
http://dx.doi.org/10.1088/1367-2630/13/8/083023
18.
18. A. Kumar, D. K. Avasthi, A. Tripathi, D. Kabiraj, F. Singh, J. C. Pivin, J. Appl. Phys. 101, 014308 (2007).
http://dx.doi.org/10.1063/1.2404794
19.
19. D. Fink, R. Klett, Rad. Eff. & Defects in Insulators 132, 27 (1994).
http://dx.doi.org/10.1080/10420159408219253
20.
20. P. Murugaraj, D. Mainwaring, and R. Siegele, Appl. Phys. Lett. 94, 122101 (2009).
http://dx.doi.org/10.1063/1.3106602
21.
21. S. Nagata, T. Hagino, Y. Seki, T. Bitoh, Physica B 194-196, 1077 (1994).
http://dx.doi.org/10.1016/0921-4526(94)90868-0
22.
22. T. Furubayashi, T. Matsumoto, T. Hagino, S. Nagata, J. Phys. Soc. Japan 63, 3333 (1994).
http://dx.doi.org/10.1143/JPSJ.63.3333
23.
23. M. Koshimizu, H. Tsukahara, K. Asai, Nucl. Instr. Meth B 267, 1125 (2009).
http://dx.doi.org/10.1016/j.nimb.2009.02.052
24.
24. T. Furubayashi, H. Suzuki, T. Matsumoto, S. Nagata, Solid State Comm. 126 (2003) 617
http://dx.doi.org/10.1016/S0038-1098(03)00298-9
25.
25. Y. Tokura, Physics Today 56, 50 (2003).
http://dx.doi.org/10.1063/1.1603080
26.
26. C. H. Ahn, A. Bhattacharya, M. Di Ventra, J. N. Eckstein, C. D. Frisbie, M. E. Gershenson, A. M. Goldman, I. H. Inoue, J. Mannhart, A. J. Millis, A. F. Morpurgo, D. Natelson, and J. M. Triscone, Rev. Mod. Phys. 78, 1185 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.1185
27.
27. D. Ruzmetov, G. Gopalakrishnan, J. Deng, V. Narayanamurti, and S. Ramanathan, J. Appl. Phys. 106, 083702 (2009).
http://dx.doi.org/10.1063/1.3245338
28.
28. C. Ko, S. Ramanathan, J. Appl. Phys. 106, 034101 (2009).
http://dx.doi.org/10.1063/1.3186024
29.
29. B. Viswanath, C. Ko, Z. Yang, and S. Ramanathan, J. Appl. Phys. 109, 063512 (2011).
http://dx.doi.org/10.1063/1.3556756
30.
30. J. S. Y Feng, R. D. Pashley, M. A. Nicolet, J. Phys. C: Solid State Phys. 8, 1010 (1975).
http://dx.doi.org/10.1088/0022-3719/8/7/017
31.
31. S. Lee, A. Fursina, J. T. Mayo, C. T. Yavuz, V. L. Colvin, R. G. S. Sofin, I. V. Shvets, D. Natelson, Nature Materials 17, 131 (2008).
32.
32. Z. Yang, C. Ko and S. Ramanathan, J. Appl. Phys. 108, 073708 (2010).
http://dx.doi.org/10.1063/1.3492716
33.
33. F. J. Morin, Phys. Rev. Lett. 3, 34 (1959).
http://dx.doi.org/10.1103/PhysRevLett.3.34
34.
34. A. S. Barker Jr., H. W. Verleur, H. J. Guggenheim, Phys. Rev. Lett. 17, 1286 (1966).
http://dx.doi.org/10.1103/PhysRevLett.17.1286
35.
35. L. A. Ladd, W. Paul, Solid State Commun. 7, 425 (1969).
http://dx.doi.org/10.1016/0038-1098(69)90888-6
36.
36. S. D. Ha, G. H. Aydogdu, S. Ramanathan, Appl. Phys. Lett. 98, 012105 (2011).
http://dx.doi.org/10.1063/1.3536486
37.
37. J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and Jennifer E. Hoffman, Appl. Phys. Lett. 96, 213106 (2010).
http://dx.doi.org/10.1063/1.3435466
38.
38. T. Driscoll, H.-T. Kim, B.-G. Chae, M. Di Ventra, and D. N. Basov, Appl. Phys. Lett. 95, 043503 (2009).
http://dx.doi.org/10.1063/1.3187531
39.
39. M. J. Lee, Y. Park, D. S. Suh, E. H. Lee, S. Seo, D. C. Kim, R. Jung, B. S. Kang, S. E. Ahn, C. B. Lee, D. H. Seo, Y. K. Cha, I. K. Yoo, J. S. Kim, and B. H. Park, Adv. Mater. 19, 3919 (2007).
http://dx.doi.org/10.1002/adma.200700251
40.
40. G. Stefanovich, A. Pergament and D. Stefanovich, J. Phys.: Condens. Matter 12, 8837 (2000).
http://dx.doi.org/10.1088/0953-8984/12/41/310
41.
41. J. B. Goodenough, J. Solid State Chemistry 3, 490 (1971).
http://dx.doi.org/10.1016/0022-4596(71)90091-0
42.
42. M. B. Sahana, G. N. Subbanna and S. A. Shivashankar, J. Appl. Phys. 92, 6495 (2002).
http://dx.doi.org/10.1063/1.1518148
43.
43. C. Kim, J. S. Shin and H. Ozaki J. Phys.: Condens. Matter 19, 096007 (2007).
http://dx.doi.org/10.1088/0953-8984/19/9/096007
44.
44. A. Cavalleri, C. S. Tóth, C. W. Siders, J. A. Squier, F. Ráksi, P. Forget and J. C. Kieffer, Phys. Rev. Lett. 87, 237401 (2001).
http://dx.doi.org/10.1103/PhysRevLett.87.237401
45.
45. M. Rini M, A. Cavalleri, R. W. Schoenlein, R. López, L. C. Feldman, R. F. Haglund Jr, L. a. Boatner and T. E. Haynes, Optics Lett. 30, 558 (2005).
http://dx.doi.org/10.1364/OL.30.000558
46.
46. H. T. Kim, B. G. Chae, D. H. Youn, S. L. Maeng, G. Kim, K. Y. Kang and Y. S. Lim, New J. Phys. 6, 52 (2004).
http://dx.doi.org/10.1088/1367-2630/6/1/052
47.
47. H. T. Kim, B. J. Kim, S. Choi, B. G. Chae, Y. W. Lee, T. Driscoll, M. M. Qazilbash and D. N. Basov, J. Appl. Phys. 107, 023702 (2010).
http://dx.doi.org/10.1063/1.3275575
48.
48. A. Crunteanu, J. Givernaud, J. Leroy, D. Mardivirin, C. Champeaux, J.-C. Orlianges, A. Catherinot and P. Blondy, Sci. Technol. Adv. Mater. 11, 065002 (2010).
http://dx.doi.org/10.1088/1468-6996/11/6/065002
49.
49. T. Kikuzuki and M. Lippmaa, Appl. Phys. Lett. 96, 132107 (2010).
http://dx.doi.org/10.1063/1.3380599
50.
50. J. Cao, W. Fan, K. Chen, N. Tamura, M. Kunz, V. Eyert, J. Wu, Phys. Rev. B 82, 241101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.241101
51.
51. E. M. Heckman, L. P. Gonzalez, S. Guha, J. O. Barnes, A. Carpenter, Thin Solid Films 518, 265 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.05.063
52.
52. P. Jin, S. Nakao, S. Tanemura, Thin Solid Films 324, 151 (1998).
http://dx.doi.org/10.1016/S0040-6090(98)00362-9
53.
53. R. Lopez, L. A. Boatner, T. E. Haynes, R. F. Haglung jr, L. C. Feldman, Appl. Phys. Lett. 79, 3161 (2001).
http://dx.doi.org/10.1063/1.1415768
54.
54. J. Ziegler, J. Biersack, M. D. Ziegler, SRIM – The Stopping and Ranges of Ions in Solids (Chester: SR I M Co.,2008), http://srim.org.
55.
55. J. G. Simmons, Phys. Rev. 155, 657 (1967).
http://dx.doi.org/10.1103/PhysRev.155.657
56.
56. C. Ko and S. Ramanathan, Appl. Phys. Lett. 93, 252101 (2008).
http://dx.doi.org/10.1063/1.3050464
57.
57. K. Okimura, J. Sakai, S. Ramanathan, J. Appl. Phys 107, 063503 (2010).
http://dx.doi.org/10.1063/1.3327422
58.
58. M. Gurvitch, S. Luryi, A. Polyakov, A. Shabalov, M. Dudley, G. Wang, S. Ge, Y. Yakovlev, J. Appl. Phys. 102, 033504 (2007).
http://dx.doi.org/10.1063/1.2764245
59.
59. S. Moll, L. Thomé, L. Vincent, F. Garrido, G. Sattonnay, T. Thomé, J. Jagielski, and J. M. Costantini, J. Appl. Phys. 105, 023512 (2009).
http://dx.doi.org/10.1063/1.3066279
60.
60. G. Sattonay, M. Lahrichi, A. Benyagoub, J. M. Constantini, F. Garrido, L. Thome, C. Trautmann, Nucl. Instr. Meth. B 257, 476 (2007).
http://dx.doi.org/10.1016/j.nimb.2007.01.238
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3646527
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

AFM topography and current mapping of the identical sample region of an as-grown VO2 thin film with thickness of about 100 nm and rms roughness of 10 nm. The sample bias was +25 mV applied to the Si substrate.

Image of FIG. 2.

Click to view

FIG. 2.

Resistance versus temperature curves for un-irradiated films and films irradiated with 1 GeV 238U ions, measured with two evaporated Au top contacts. The arrows indicate the curves obtained for increasing or decreasing temperature. The persistent increase in conductivity with increasing irradiation fluence is clearly seen.

Image of FIG. 3.

Click to view

FIG. 3.

I-V curves of as grown and 1 GeV U irradiated VO2 films measured at 30 °C (below the MIT temperature) and 90°C (above the MIT temperature). The curves are symmetric and the absolute current values are shown.

Image of FIG. 4.

Click to view

FIG. 4.

Resistance versus temperature curves for un-irradiated VO2 (solid lines) and films irradiated with 1·1010/cm2 1 GeV U ions (dashed lines). The measurements were performed using a Au top contact and a Ag-paste bottom contact as illustrated. The bias voltage was varied between 60 mV and 0.6 V. The thin black lines represent curves for intermediate bias voltages (0.1 V, 0.2 V, 0.4 V, and 0.5 V). For all bias voltages and temperatures the resistance of irradiated films remains significantly lower compared to un-irradiated ones, showing that the ion irradiation induces a persistent conductivity increase. There is no shift of MIT below room temperature.

Image of FIG. 5.

Click to view

FIG. 5.

Simplified equivalent circuit diagram for the measurement geometry with two top contacts (a) and a measurement geometry with one top and one bottom contact (b) with contact resistance RC, parallel resistance of the VO2 film R∥, and perpendicular resistance of the VO2 film taking also into account the silica interface. The low resistance of the Si substrate is neglected.

Image of FIG. 6.

Click to view

FIG. 6.

AFM topography image and current mapping of a film irradiated with 5·109 U/cm2 for a 500 x 500 nm2 region and for bias voltage +25 mV at the Si substrate. The ion fluence corresponds to 12 ± 4 ion tracks per image. There are no indications of small ion track-related hillocks in the topography image, but there are indications in the current map for ion tracks with higher resistivity (small round dark regions) surrounded by a halo of low resistivity (bright regions). Some of these features like the ones marked with circles are located within crystallites.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3646527
2011-09-23
2014-04-20

Abstract

We demonstrate the generation of a persistent conductivity increase in vanadium dioxide thin films grown on single crystal silicon by irradiation with 1 GeV 238U swift heavy ions at room temperature. VO2 undergoes a temperature driven metal-insulator-transition (MIT) at 67 °C. After room temperatureion irradiation with high electronic energy loss of 50 keV/nm the conductivity of the films below the transition temperature is strongly increased proportional to the ion fluence of 5·109 U/cm2 and 1·1010 U/cm2. At high temperatures the conductivity decreases slightly. The ion irradiation slightly reduces the MIT temperature. This observed conductivity change is persistent and remains after heating the samples above the transition temperature and subsequent cooling. Low temperaturemeasurements down to 15 K show no further MIT below room temperature. Although the conductivity increase after irradiation at such low fluences is due to single ion track effects,atomic force microscopy(AFM)measurements do not show surface hillocks, which are characteristic for ion tracks in other materials.ConductiveAFM gives no evidence for conducting ion tracks but rather suggests the existence of conducting regions around poorly conducting ion tracks, possible due to stress generation. Another explanation of the persistent conductivity change could be the ion-induced modification of a high resistivity interface layer formed during film growth between the vanadium dioxide film and the n-Silicon substrate. The swift heavy ions may generate conducting filaments through this layer, thus increasing the effective contact area. Swift heavy ion irradiation can thus be used to tune the conductivity of VO2 films on silicon substrates.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3646527.html;jsessionid=1lfen75oid0nt.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3646527&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tuning the conductivity of vanadium dioxide films on silicon by swift heavy ion irradiation
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3646527
10.1063/1.3646527
SEARCH_EXPAND_ITEM