1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Structural transformation and charge transfer induced ferroelectricity and magnetism in annealed YMnO3
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/3/10.1063/1.3647519
1.
1. M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).
http://dx.doi.org/10.1038/nature01077
2.
2. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
http://dx.doi.org/10.1038/nature02018
3.
3. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature 430, 541 (2004).
http://dx.doi.org/10.1038/nature02728
4.
4. S. Lee, A. Pirogov, M. Kang, K. H. Jang, M. Yonemura, T. Kamiyama, S. W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J. G. Park, Nature 451, 805 (2008).
http://dx.doi.org/10.1038/nature06507
5.
5. S. W. Cheong, and M. Mostovoy, Nat. Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
6.
6. V. Skumryev, V. Laukhin, I. Fina, X. Martí, F. Sánchez, M. Gospodinov, and J. Fontcuberta, Phys. Rev. Lett. 106, 057206 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.057206
7.
7. W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter 17, R803 (2005).
http://dx.doi.org/10.1088/0953-8984/17/30/R01
8.
8. I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.227204
9.
9. D. Meier, N. Aliouane, D. N. Argyriou, J. A. Mydosh, and T. Lorenz, New J. Phys. 9, 100 (2007).
http://dx.doi.org/10.1088/1367-2630/9/4/100
10.
10. R. V. Aguilar, M. Mostovoy, A. B. Sushkov, C. L. Zhang, Y. J. Choi, S. W. Cheong, and H. D. Drew, Phys. Rev. Lett. 102, 047203 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.047203
11.
11. A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, Phys. Rev. B 62,9498 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.9498
12.
12. O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S. W. Cheong, Phys. Rev. Lett. 94, 087601 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.087601
13.
13. X. Fabrèges, S. Petit, I. Mirebeau, S. Pailhès, L. Pinsard, A. Forget, M. T. Fernández-Díaz, and F. Porcher, Phys. Rev. Lett. 103, 067204 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.067204
14.
14. K. Łukaszewicz, and J. Karut-Kalicińska, Ferroelectrics 7, 81 (1974).
http://dx.doi.org/10.1080/00150197408237954
15.
15. A. Filippetti, and N. A. Hill, J. Magnet. Magnet. Mater. 236, 176 (2001).
http://dx.doi.org/10.1016/S0304-8853(01)00445-0
16.
16. N. A. Hill, and A. Filippetti, J. Magnet. Magnet. Mater. 242, 976 (2002).
http://dx.doi.org/10.1016/S0304-8853(01)01078-2
17.
17. B. B. V. Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3, 164 (2004).
http://dx.doi.org/10.1038/nmat1080
18.
18. H. D. Zhou, J. C. Denyszyn, and J. B. Goodenough, Phys. Rev. B 72, 224401 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.224401
19.
19. U. Adem, A. A. Nugroho, A. Meetsma, and T. T. M. Palstra, Phys. Rev. B 75, 014108 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.014108
20.
20. A. A. Nugroho, N. Bellido, U. Adem, G. Nénert, C. Simon, M. O. Tjia, M. Mostovoy, and T. T. M. Palstra, Phys. Rev. B 75, 174435 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.174435
21.
21. D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. J. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett. 98, 217601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.217601
22.
22. D. Y. Cho, S. J. Oh, D. G. Kim, A. Tanaka, and J. H. Park, Phys. Rev. B 79, 035116 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.035116
23.
23. J. Kim, K. C. Cho, Y. M. Koo, K. P. Hong, and N. Shin, Appl. Phys. Lett. 95, 132901 (2009).
http://dx.doi.org/10.1063/1.3233943
24.
24. B. H. Toby, J. Appl. Cryst. 34, 210 (2001).
http://dx.doi.org/10.1107/S0021889801002242
25.
25. B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 70, 212412 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.212412
26.
26. B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.104405
27.
27. K. Uusi-Esko, J. Malm, and M. Karppinen, Chem. Mater. 21, 5691 (2009).
http://dx.doi.org/10.1021/cm9020172
28.
28. X. Martí, I. Fina, V. Skumryev, C. Ferrater, M. Varela, L. Fábrega, F. Sánchez, and J. Fontcuberta, Appl. Phys. Lett. 95, 142903 (2009).
http://dx.doi.org/10.1063/1.3238287
29.
29. I. Fina, L. Fàbrega, X. Martí, F. Sánchez, and J. Fontcuberta, Appl. Phys. Lett. 97, 232905 (2010).
http://dx.doi.org/10.1063/1.3523352
30.
30. M. H. Frey, and D. A. Payne, Phys. Rev. B 54, 3158 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.3158
31.
31. M. T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, Z. Zhao, M. Nygren, C. Harnagea, D. Piazza, and C. Galassi, Phys. Rev. B 73, 064114 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.064114
32.
32. T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Phys. Rev. B 66, 134434 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.134434
33.
33. H. W. Zheng, Y. F. Liu, W. Y. Zhang, S. J. Liu, H. R. Zhang, and K. F. Wang, J. Appl. Phys. 107, 053901 (2010).
http://dx.doi.org/10.1063/1.3296323
34.
34. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.174420
35.
35. Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 56, 2623 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.2623
36.
36. A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.4453
37.
37. A. Muñoz, J. A. Alonso, M. T. Casais, M. J. Martínez-Lope, J. L. Martínez, and M. T. Feráandez-Díaz, J. Phys.: Condens. Matter 14, 3285 (2002).
http://dx.doi.org/10.1088/0953-8984/14/12/315
38.
38. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, Mass., (1972).
39.
39. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
http://dx.doi.org/10.1016/0022-3697(58)90076-3
40.
40. T. Moriya, Phys. Rev. 120, 91 (1960).
http://dx.doi.org/10.1103/PhysRev.120.91
41.
41. S. Pailhès, X. Fabrèges, L. P. Régnault, L. Pinsard-Godart, I. Mirebeau, F. Moussa, M. Hennion, and S. Petit, Phys. Rev. B 79, 134409 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.134409
42.
42. J. C. A. Huang, and H. S. Hsu, Appl. Phys. Lett. 87, 132503 (2005).
http://dx.doi.org/10.1063/1.2058211
43.
43. R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley, Phys. Rev. B 75, 245111 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245111
44.
44. C. Y. Hsu, J. C. A. Huang, Y. H. Lee, S. F. Chen, C. P. Liu, S. J. Sun, and Y. Tzeng, Appl. Phys. Lett. 94, 052504 (2009).
http://dx.doi.org/10.1063/1.3077312
45.
45. D. C. Sinclair, and A. R. West, J. Appl. Phys. 66, 3850 (1989).
http://dx.doi.org/10.1063/1.344049
46.
46. L. Curecheriu, M. T. Buscaglia, V. Buscaglia, Z. Zhao, and L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010).
http://dx.doi.org/10.1063/1.3526375
47.
47. S. H. Kim, S. H. Lee, T. H. Kim, T. Zyung, Y. H. Jeong, and M. S. Jang, Cryst. Res. Technol. 35, 19 (2000).
http://dx.doi.org/10.1002/(SICI)1521-4079(200001)35:1<19::AID-CRAT19>3.0.CO;2-V
48.
48. W. J. Chang, J. Y. Tsai, H. T. Jeng, J. Y. Lin, K. Y. J. Zhang, H. L. Liu, J. M. Lee, J. M. Chen, K. H. Wu, T. M. Uen, Y. S. Gou, and J. Y. Juang, Phys. Rev. B 72, 132410 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.132410
49.
49. B. Gilbert, B. H. Frazer, A. Belz, P. G. Conrad, K. H. Nealson, D. Haskel, J. C. Lang, G. Srajer, and G. D. Stasio, J. Phys. Chem. A 107, 2839 (2003).
http://dx.doi.org/10.1021/jp021493s
50.
50. H. Kurata, and C. Colliex, Phys. Rev. B 48, 2102 (1993).
http://dx.doi.org/10.1103/PhysRevB.48.2102
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3647519
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) The crystal structure of orthorhombic RMnO3 and its local MnO6 and RO12 cage structures. (b) The crystal structure of hexagonal RMnO3 and its local MnO5 and RO8 cage structures.

Image of FIG. 2.

Click to view

FIG. 2.

The observed (thin-plus) and calculated (solid-line) RT XRD patterns for samples with various degrees of structural distortion by annealing at different Ta. Positions of Bragg reflections are indicated using bars: the first row for the hexagonal phase (black) and the second row for the orthorhombic phase (red).

Image of FIG. 3.

Click to view

FIG. 3.

(a)-(e) SEM micrographs for samples with different Ta. (f) The EDS analytic spectrum.

Image of FIG. 4.

Click to view

FIG. 4.

The ZFC-FC M-T curves under an applied field of 100 Oe for samples with (a) Ta=700 °C and (b) other Ta. (c) The M-H loops at 5 K for samples with different Ta. (d) Temperature dependence of the derivative of the magnetic susceptibility (dχ/dT) at 7 T. (e) Reciprocal susceptibility versus temperature for samples with different Ta. The fitting curves of the C-W law are shown by solid lines. (f) The C-W temperature evaluated in the high-temperature regime as a function of Ta; insets show orthorhombic (left side) and hexagonal (right side) structures.

Image of FIG. 5.

Click to view

FIG. 5.

(a)-(e) Normalized real and imaginary parts of CI spectra as functions of frequency for samples with different Ta. The best fitting results of the EC model are shown by the solid curves. Schematic diagrams of the EC model are shown in the insets. (f) Imaginary parts of CM spectra as functions of frequency for samples with different Ta.

Image of FIG. 6.

Click to view

FIG. 6.

FE hysteresis loops measured at RT with a frequency of 1 kHz for samples with (a) Ta=1100 °C, (b) Ta=1250 °C and Ta=1400 °C. (c) PUND measurements for samples with different Ta. (d) Temperature dependence of the normalized permittivity for samples with different Ta.

Image of FIG. 7.

Click to view

FIG. 7.

The normalized XANES of samples with different Ta on (a) O K-edge and (b) Mn L 2,3-edge. Insets of (a) show local structures of MnO6 and YO12 cages in the orthorhombic phase (at the bottom) and those of MnO5 and YO8 cages in the hexagonal phase (at the top).

Tables

Generic image for table

Click to view

Table I.

Lattice parameters (a, b and c), volume of unit cell (V) and the average grain size (D) of samples with different Ta.

Generic image for table

Click to view

Table II.

Fitting parameters of CI spectra of grains and GBs for samples with different Ta.

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3647519
2011-09-26
2014-04-18

Abstract

Multiferroic materials such as YMnO3, which uniquely exhibit ferroelectricity and magnetism simultaneously, have been extensively studied for spintronic device applications. However, the origin of multiferroicity remains poorly understood. In this study, the structural phases of YMnO3 ceramics and their lattice distortions after careful annealing were investigated to explain the origins of their multiferroicity. A structural transition from the orthorhombic to the hexagonal phase was observed when the annealing temperature reached around 1100 °C. This structural transformation also results in a magnetic transition from 3D Mn-O-Mn to 2D Mn-O-Mn superexchange coupling. The ferroelectricity was enhanced by escalation of the structural distortion caused by the rising annealing temperature. The annealing effect also results in the re-hybridization of the electronic structure of YMnO3. X-rayabsorption near-edge spectra suggest that there is charge transfer from the Y-OT (apical oxygen) bonds of Y 4d-O 2p hybridized states to the OT-Mn bonds of Mn 3d-O 2p hybridized states, which is responsible for the enhanced ferroelectricity. This approach could be used to probe the origin of the ferroelectricity and multiferroic properties in rare-earth manganites.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3647519.html;jsessionid=1itm5gi0vpvl.x-aip-live-01?itemId=/content/aip/journal/adva/1/3/10.1063/1.3647519&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Structural transformation and charge transfer induced ferroelectricity and magnetism in annealed YMnO3
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3647519
10.1063/1.3647519
SEARCH_EXPAND_ITEM