Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. Fiebig, T. Lottermoser, D. Fröhlich, A. V. Goltsev, and R. V. Pisarev, Nature 419, 818 (2002).
2. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature 426, 55 (2003).
3. T. Lottermoser, T. Lonkai, U. Amann, D. Hohlwein, J. Ihringer, and M. Fiebig, Nature 430, 541 (2004).
4. S. Lee, A. Pirogov, M. Kang, K. H. Jang, M. Yonemura, T. Kamiyama, S. W. Cheong, F. Gozzo, N. Shin, H. Kimura, Y. Noda, and J. G. Park, Nature 451, 805 (2008).
5. S. W. Cheong, and M. Mostovoy, Nat. Mater. 6, 13 (2007).
6. V. Skumryev, V. Laukhin, I. Fina, X. Martí, F. Sánchez, M. Gospodinov, and J. Fontcuberta, Phys. Rev. Lett. 106, 057206 (2011).
7. W. Prellier, M. P. Singh, and P. Murugavel, J. Phys.: Condens. Matter 17, R803 (2005).
8. I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).
9. D. Meier, N. Aliouane, D. N. Argyriou, J. A. Mydosh, and T. Lorenz, New J. Phys. 9, 100 (2007).
10. R. V. Aguilar, M. Mostovoy, A. B. Sushkov, C. L. Zhang, Y. J. Choi, S. W. Cheong, and H. D. Drew, Phys. Rev. Lett. 102, 047203 (2009).
11. A. Muñoz, J. A. Alonso, M. J. Martínez-Lope, M. T. Casáis, J. L. Martínez, and M. T. Fernández-Díaz, Phys. Rev. B 62,9498 (2000).
12. O. P. Vajk, M. Kenzelmann, J. W. Lynn, S. B. Kim, and S. W. Cheong, Phys. Rev. Lett. 94, 087601 (2005).
13. X. Fabrèges, S. Petit, I. Mirebeau, S. Pailhès, L. Pinsard, A. Forget, M. T. Fernández-Díaz, and F. Porcher, Phys. Rev. Lett. 103, 067204 (2009).
14. K. Łukaszewicz, and J. Karut-Kalicińska, Ferroelectrics 7, 81 (1974).
15. A. Filippetti, and N. A. Hill, J. Magnet. Magnet. Mater. 236, 176 (2001).
16. N. A. Hill, and A. Filippetti, J. Magnet. Magnet. Mater. 242, 976 (2002).
17. B. B. V. Aken, T. T. M. Palstra, A. Filippetti, and N. A. Spaldin, Nat. Mater. 3, 164 (2004).
18. H. D. Zhou, J. C. Denyszyn, and J. B. Goodenough, Phys. Rev. B 72, 224401 (2005).
19. U. Adem, A. A. Nugroho, A. Meetsma, and T. T. M. Palstra, Phys. Rev. B 75, 014108 (2007).
20. A. A. Nugroho, N. Bellido, U. Adem, G. Nénert, C. Simon, M. O. Tjia, M. Mostovoy, and T. T. M. Palstra, Phys. Rev. B 75, 174435 (2007).
21. D. Y. Cho, J. Y. Kim, B. G. Park, K. J. Rho, J. H. Park, H. J. Noh, B. J. Kim, S. J. Oh, H. M. Park, J. S. Ahn, H. Ishibashi, S. W. Cheong, J. H. Lee, P. Murugavel, T. W. Noh, A. Tanaka, and T. Jo, Phys. Rev. Lett. 98, 217601 (2007).
22. D. Y. Cho, S. J. Oh, D. G. Kim, A. Tanaka, and J. H. Park, Phys. Rev. B 79, 035116 (2009).
23. J. Kim, K. C. Cho, Y. M. Koo, K. P. Hong, and N. Shin, Appl. Phys. Lett. 95, 132901 (2009).
24. B. H. Toby, J. Appl. Cryst. 34, 210 (2001).
25. B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 70, 212412 (2004).
26. B. Lorenz, Y. Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007).
27. K. Uusi-Esko, J. Malm, and M. Karppinen, Chem. Mater. 21, 5691 (2009).
28. X. Martí, I. Fina, V. Skumryev, C. Ferrater, M. Varela, L. Fábrega, F. Sánchez, and J. Fontcuberta, Appl. Phys. Lett. 95, 142903 (2009).
29. I. Fina, L. Fàbrega, X. Martí, F. Sánchez, and J. Fontcuberta, Appl. Phys. Lett. 97, 232905 (2010).
30. M. H. Frey, and D. A. Payne, Phys. Rev. B 54, 3158 (1996).
31. M. T. Buscaglia, M. Viviani, V. Buscaglia, L. Mitoseriu, A. Testino, P. Nanni, Z. Zhao, M. Nygren, C. Harnagea, D. Piazza, and C. Galassi, Phys. Rev. B 73, 064114 (2006).
32. T. Katsufuji, M. Masaki, A. Machida, M. Moritomo, K. Kato, E. Nishibori, M. Takata, M. Sakata, K. Ohoyama, K. Kitazawa, and H. Takagi, Phys. Rev. B 66, 134434 (2002).
33. H. W. Zheng, Y. F. Liu, W. Y. Zhang, S. J. Liu, H. R. Zhang, and K. F. Wang, J. Appl. Phys. 107, 053901 (2010).
34. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).
35. Z. J. Huang, Y. Cao, Y. Y. Sun, Y. Y. Xue, and C. W. Chu, Phys. Rev. B 56, 2623 (1997).
36. A. Kebede, C. S. Jee, J. Schwegler, J. E. Crow, T. Mihalisin, G. H. Myer, R. E. Salomon, P. Schlottmann, M. V. Kuric, S. H. Bloom, and R. P. Guertin, Phys. Rev. B 40, 4453 (1989).
37. A. Muñoz, J. A. Alonso, M. T. Casais, M. J. Martínez-Lope, J. L. Martínez, and M. T. Feráandez-Díaz, J. Phys.: Condens. Matter 14, 3285 (2002).
38. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley, Reading, Mass., (1972).
39. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
40. T. Moriya, Phys. Rev. 120, 91 (1960).
41. S. Pailhès, X. Fabrèges, L. P. Régnault, L. Pinsard-Godart, I. Mirebeau, F. Moussa, M. Hennion, and S. Petit, Phys. Rev. B 79, 134409 (2009).
42. J. C. A. Huang, and H. S. Hsu, Appl. Phys. Lett. 87, 132503 (2005).
43. R. Schmidt, W. Eerenstein, T. Winiecki, F. D. Morrison, and P. A. Midgley, Phys. Rev. B 75, 245111 (2007).
44. C. Y. Hsu, J. C. A. Huang, Y. H. Lee, S. F. Chen, C. P. Liu, S. J. Sun, and Y. Tzeng, Appl. Phys. Lett. 94, 052504 (2009).
45. D. C. Sinclair, and A. R. West, J. Appl. Phys. 66, 3850 (1989).
46. L. Curecheriu, M. T. Buscaglia, V. Buscaglia, Z. Zhao, and L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010).
47. S. H. Kim, S. H. Lee, T. H. Kim, T. Zyung, Y. H. Jeong, and M. S. Jang, Cryst. Res. Technol. 35, 19 (2000).<19::AID-CRAT19>3.0.CO;2-V
48. W. J. Chang, J. Y. Tsai, H. T. Jeng, J. Y. Lin, K. Y. J. Zhang, H. L. Liu, J. M. Lee, J. M. Chen, K. H. Wu, T. M. Uen, Y. S. Gou, and J. Y. Juang, Phys. Rev. B 72, 132410 (2005).
49. B. Gilbert, B. H. Frazer, A. Belz, P. G. Conrad, K. H. Nealson, D. Haskel, J. C. Lang, G. Srajer, and G. D. Stasio, J. Phys. Chem. A 107, 2839 (2003).
50. H. Kurata, and C. Colliex, Phys. Rev. B 48, 2102 (1993).

Data & Media loading...


Article metrics loading...



Multiferroic materials such as YMnO3, which uniquely exhibit ferroelectricity and magnetism simultaneously, have been extensively studied for spintronic device applications. However, the origin of multiferroicity remains poorly understood. In this study, the structural phases of YMnO3 ceramics and their lattice distortions after careful annealing were investigated to explain the origins of their multiferroicity. A structural transition from the orthorhombic to the hexagonal phase was observed when the annealing temperature reached around 1100 °C. This structural transformation also results in a magnetic transition from 3D Mn-O-Mn to 2D Mn-O-Mn superexchange coupling. The ferroelectricity was enhanced by escalation of the structural distortion caused by the rising annealing temperature. The annealing effect also results in the re-hybridization of the electronic structure of YMnO3. X-rayabsorption near-edge spectra suggest that there is charge transfer from the Y-OT (apical oxygen) bonds of Y 4d-O 2p hybridized states to the OT-Mn bonds of Mn 3d-O 2p hybridized states, which is responsible for the enhanced ferroelectricity. This approach could be used to probe the origin of the ferroelectricity and multiferroic properties in rare-earth manganites.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd