Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3647619
1.
1. E. Ogam, C. Depollier, and Z. E. A. Fellah. The direct problem of acoustic diffraction of an audible probe radiation by an air-saturated porous cylinder. J. Appl. Phys., 108(113519):9 pages, 2010.
http://dx.doi.org/10.1063/1.3514546
2.
2. E. Ogam, C. Depollier, and Z. E. A. Fellah. The direct and inverse problems of an air-saturated porous cylinder submitted to acoustic radiation. Rev. Sci. Inst., 81(094902):9 pages, 2010.
http://dx.doi.org/10.1063/1.3482015
3.
3. J.-F Allard and N. Atalla. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. John Wiley and Sons, 2nd edition, 2009.
4.
4. J.-P. Groby, E. Ogam, L. De Ryck, N. Sebaa, and W. Lauriks. Analytical method for the ultrasonic characterization of homogeneous rigid porous materials from transmitted and reflected coefficients. J. Acoust. Soc. Am., 127(2):764772, 2010.
http://dx.doi.org/10.1121/1.3283043
5.
5. Z. E. A. Fellah, F. G. Mitri, M. Fellah, E. Ogam, and C. Depollier. Ultrasonic characterization of porous absorbing materials : Inverse problem. J. Sound Vib., 302(4-5):746759, 2007.
http://dx.doi.org/10.1016/j.jsv.2006.12.007
6.
6. Ph. Leclaire, L. Kelders, W. Lauriks, J. F. Allard, and C. Glorieux. Ultrasonic wave propagation in reticulated foams saturated by different gases: High frequency limit of the classical models. Appl. Phys. Lett., 69(18):26412643, 1996.
http://dx.doi.org/10.1063/1.117544
7.
7. E. Ogam, Z. E. A. Fellah, N. Sebaa, and J.-P Groby. Non-ambiguous recovery of Biot poroelastic parameters of cellular panels using ultrasonic waves. J. Sound and Vib., 330(6):10741090, 2011.
http://dx.doi.org/10.1016/j.jsv.2010.09.032
8.
8. M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-Frequency Range. J. Acoust. Soc. Am., 28(2):168178, 1956.
http://dx.doi.org/10.1121/1.1908239
9.
9. M. A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher Frequency Range. J. Acoust. Soc. Am., 28(2):179191, 1956.
http://dx.doi.org/10.1121/1.1908241
10.
10. Y. Champoux and J.-F. Allard. Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys., 70:19751979, 1991.
http://dx.doi.org/10.1063/1.349482
11.
11. Y. Champoux and Michael R. Stinson. On acoustical models for sound propagation in rigid frame porous materials and the influence of shape factors. J. Acoust. Soc. Am., 92(2):11201131, 1992.
http://dx.doi.org/10.1121/1.405281
12.
12. D. Lafarge, P. Lemarinier, J.-F. Allard, and V. Tarnow. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am., 102(4):19952006, 1997.
http://dx.doi.org/10.1121/1.419690
13.
13. J.-F. Allard and Y. Champoux. New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am., 91(6):33463353, 1992.
http://dx.doi.org/10.1121/1.402824
14.
14. S. M. Hasheminejad and M. A. Alibakhshi. Diffraction of sound by a poroelastic cylindrical absorber near an impedance plane. Int. J. Mech. Sci., 49(1):112, 2007.
http://dx.doi.org/10.1016/j.ijmecsci.2006.08.011
15.
15. M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, Ninth Dover printing, tenth GPO printing edition, 1964.
16.
16. Jin Au Kong. Electromagnetic Wave Theory. EMW publishing, Cambridge,. Massachusetts, USA, 2008.
17.
17. P. M. Morse and K. U. Ingard. Theoretical acoustics. McGraw-Hill, Inc, New York, 1968.
18.
18. J. D. Achenbach. Wave propagation in elastic solids. North-Holland, New York, 1973.
19.
19. Keith O. Geddes, George Labahn, and Michael Monagan. Maple 12 Advanced Programming Guide. Computer Science Department, University of Waterloo, Ontario, Canada, 2010.
20.
20. X. Olny and R. Panneton. Acoustical determination of the parameters governing thermal dissipation in porous media. J. Acoust. Soc. Am., 123(2):814824, 2008.
http://dx.doi.org/10.1121/1.2828066
21.
21. D. Lafarge. Matériaux et acoustique 1, volume 1, chapter Milieux poreux et poreux stratifiés. Modèles linéaires de propagation, pages 143188. lavoisier, Paris, 2006.
22.
22. A. N. Norris. On the viscodynamic operator in Biot's equations of poroelasticity. Journal of Wave-Material Interaction, 1(4):365380, 1986.
23.
23. L. J. Gibson and M. F. Ashby. Cellular solids : Structure and properties. Cambridge Solid State Science. Cambridge University Press, second edition, 1997.
24.
24. D. L. Johnson, J. Koplik, and R. Dashen. Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. fluid mech., 176(1):379402, 1987.
http://dx.doi.org/10.1017/S0022112087000727
25.
25. C. Perrot, F. Chevillotte, and R. Panneton. Bottom-up approach for microstructure optimization of sound absorbing materials. J. Acoust. Soc. Am., 124(2):940948, 2008.
http://dx.doi.org/10.1121/1.2945115
26.
26. A. Moussatov, C. Ayrault, and B. Castagnède. Porous material characterization - ultrasonic method for estimation of tortuosity and characteristic length using a barometric chamber. Ultrasonics, 39(3):195202, 2001.
http://dx.doi.org/10.1016/S0041-624X(00)00062-7
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3647619
Loading
/content/aip/journal/adva/1/3/10.1063/1.3647619
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3647619
2011-09-26
2016-12-09

Abstract

A wave-fluid saturated poroelastic structure interaction model based on the modified Biot theory (MBT) and plane-wave decomposition using orthogonal cylindrical functions is developed. The model is employed to recover from real data acquired in an anechoic chamber, the poromechanical properties of a soft cellular melamine cylinder submitted to an audible acoustic radiation. The inverse problem of acoustic diffraction is solved by constructing the objective functional given by the total square of the difference between predictions from the MBT interaction model and diffracted field data from experiment. The faculty of retrieval of the intrinsic poromechanical parameters from the diffracted acoustic fields, indicate that a wave initially propagating in a light fluid (air) medium, is able to carry in the absence of mechanical excitation of the specimen, information on the macroscopic mechanical properties which depend on the microstructural and intrinsic properties of the solid phase.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3647619.html;jsessionid=rpzVFlWw_ibZOEuERtxom277.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3647619&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3647619&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3647619'
Right1,Right2,Right3,