Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/3/10.1063/1.3647985
1.
1. M. Wang, G. Xiong, X. Tang, and Z. Hong, Physica C 210, 413 (1993).
http://dx.doi.org/10.1016/0921-4534(93)90985-Y
2.
2. A. Tampieri, G. Celotti, E. Landi and G. N. Babini, Physica C: Superconductivity 235, 501 (1994).
http://dx.doi.org/10.1016/0921-4534(94)91474-5
3.
3. R. Passerini, M. Dhallé, B. Seeber and R. Flükiger, Supercond. Sci. Technol. 15, 1507 (2002).
http://dx.doi.org/10.1088/0953-2048/15/11/306
4.
4. M. T. Malachevsky and D. Alberto and C. Ovidio, Supercond. Sci. Technol. 18, 289 (2005).
http://dx.doi.org/10.1088/0953-2048/18/3/014
5.
5. Shin Hyung-Seop, Ryan John, C. Dizon, Cho Jeon Wook and Oh Sang-Soo, Cryogenics 47, 431 (2005).
6.
6. S. Ochiai, D. Doko, H. Okuda, S. S. Oh and D. W. Ha, Supercond. Sci. Technol. 19, 1097 (2006).
http://dx.doi.org/10.1088/0953-2048/19/11/002
7.
7. R. M. German et al. Powder Metallurgy Science (Princeton, NJ: Metal Powder Industries Federation) 62, (1984).
8.
8. K. Matsuzaki, A. Inove and T. Masumoto, Japan. J. Appl. Phys. 27, L779 (1988).
http://dx.doi.org/10.1143/JJAP.27.L779
9.
9. C. J. Kim, H. W. Park, K. B. Kim and G. W. Hong, Supercond. Sci. Technol. 8, 652 (1995).
http://dx.doi.org/10.1088/0953-2048/8/8/009
10.
10. C. P. Bean, Phys. Rev. Lett. 8, 250 (1962).
http://dx.doi.org/10.1103/PhysRevLett.8.250
11.
11. Su Xiaodong, Giannini Enrico and Rene Flükiger, Supercond. Sci. Technol. 18, 830 (2005).
http://dx.doi.org/10.1088/0953-2048/18/6/007
12.
12. M. I. Petrov, I. L. Belozerova, K. A. Shaikhutdinov, D. A. Balaev, A. A. Dubrovskii, S. I. Popkov, A. D. Vasil'ev and O. N. Mart'yanov, Supercond. Sci. Technol. 21, 105019 (2008).
http://dx.doi.org/10.1088/0953-2048/21/10/105019
13.
13. H. Aydin, O. Cakiroglu, M. Nursoy and C. Terzioglu, Chinese Journal of Physics 47, 2 (2009).
14.
14. M. I. Adam and K. Osamura, Supercond. Sci. Technol. 19, 1018 (2006).
http://dx.doi.org/10.1088/0953-2048/19/10/005
15.
15. L. Zhao, L. Xie, P. Li, T. M. Qu, Y. Song, X-C. Wang and Z. HanProceedings of the 19th International Symposium on Superconductivity (ISS)Physica C: Superconductivity 463, 867 (2006).
http://dx.doi.org/10.1016/j.physc.2007.02.034
16.
16. J. C. Grivel and R. Flükiger, Physica C: Superconductivity 256, 283 (1996).
http://dx.doi.org/10.1016/0921-4534(95)00669-9
17.
17. L. D. Sýkorová, O. Smrčková, V. Jakeš, Physica status solidi (c) 1, 1952 (2004).
http://dx.doi.org/10.1002/pssc.200304466
18.
18. P. Mune, E. Altshuler, J. Musa, S. Garcia and R. Riera, Physica C 226 (1994).
19.
19. J. Lopez, P. Mune, S. Garcia and E. Altshuler, Physica C 272 (1996).
20.
20. R. L. Peterson and W. Ekin, Phys. Rev. B 37, 9848 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.9848
21.
21. K. H. Muller and D. N. Mathews, Physica C 206, 275 (1993).
http://dx.doi.org/10.1016/0921-4534(93)90526-V
22.
22. E. Altshuler, S. Garcia, J. Barroso, Physica C 177, 61 (1991).
http://dx.doi.org/10.1016/0921-4534(91)90297-C
23.
23. A. V. Narlikar, S. K. Agarwal and C. V. Narasimha Rao, “Studies of High Temperature Superconductors” ed. A. Narlikar vol. I (New York Nova), 343 (1989).
24.
24. M. A. Woolf and F. Reif, Phys. Rev. 137, A557 (1965).
http://dx.doi.org/10.1103/PhysRev.137.A557
25.
25. A. S. Edelstien, Phys. Rev. Lett., 19, 1184 (1967).
http://dx.doi.org/10.1103/PhysRevLett.19.1184
26.
26. L. Dumoulin, E. Guyon and P. Nedellec, Phys. Rev. Lett., 34, 264 (1975).
http://dx.doi.org/10.1103/PhysRevLett.34.264
27.
27. L. Dumoulin, E. Guyon and P. Nedellec, Phys. Rev. B 16, 1086 (1977).
http://dx.doi.org/10.1103/PhysRevB.16.1086
28.
28. W. Bauriedl, P. Ziemann and W. Buckel, Phys. Rev. Lett., 47, 1163 (1981).
http://dx.doi.org/10.1103/PhysRevLett.47.1163
29.
29. H. Maeda, Y. Tanaka, M. Fukotomi, T. Asano, Jpn. J. Appl. Phys. 27, 209 (1988).
http://dx.doi.org/10.1143/JJAP.27.L209
30.
30. J. M. Tarascon, Y. Lepage, L. H. Greene, B. G. Bagley, P. Barboux, D. M. Hwang, G. W. Hull, W. R. Makinnon, M. Giroud, Phys. Rev. B 38, 2504 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.2504
31.
31. J. M. Tarascon and B. G. BagleyChemistry of high temperature superconductors”, Edited by T. A. Vanderah (NOYES Publishers New York) 310 (1993).
32.
32. D. T. Verebelyi, C. W. Schneider, Y. K. Kuo, M. J. Skoe, G. X. Tessema and J. E. Payne, Physica C 328, 53 (1999).
http://dx.doi.org/10.1016/S0921-4534(99)00536-5
33.
33. D. C. Larbalestier, A. Gurevich, D. M. Feldmann and A. Polyanskii, Nature 414, 368 (2001).
http://dx.doi.org/10.1038/35104654
34.
34. R. P. Aloysius, P. Guruswamy and U. Syamaprasad, Physica C: Superconductivity 426, 556 (2005).
http://dx.doi.org/10.1016/j.physc.2005.05.017
35.
35. M. Catti, G. P. Dalba, M. Fornasini and J. Maolgg, Solid State Chem. 112, 392 (1994).
http://dx.doi.org/10.1006/jssc.1994.1322
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/3/10.1063/1.3647985
Loading
/content/aip/journal/adva/1/3/10.1063/1.3647985
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/3/10.1063/1.3647985
2011-09-27
2016-12-08

Abstract

The samples of Bi2Sr2Ca2Cu3-xMnxO10+δ (x = 0.0 to 0.30) were prepared by the standard solid-state reaction method. The phase identification characteristics of synthesized (HTSC)materials were explored through powder X-ray diffractometer reveals that all the samples crystallize in orthorhombic structure with lattice parameters a = 5.4053 Å, b = 5.4110 Å and c = 37.0642 Å up to Mn concentration of x = 0.30. The critical temperature (Tc) measured by standard four probe method has been found to depress from 108 K to 70 K as Mn content (x) increases from 0.00 to 0.30. The effects of sintering temperature on the surface morphology of Bi2Sr2Ca2Cu3-xMnxO10+δ have also been investigated. The surface morphology investigated through scanning electron microscope and atomic force microscopy(SEM & AFM) results that voids are decreasing but grains size increases as the Mn concentration increases besides, nanosphere like structures on the surface of the Mn doped Bi2Sr2Ca2Cu3-xMnxO10+δ (Bi-2223) samples.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/3/1.3647985.html;jsessionid=fna-Uzmhkv6Xm-gOpFT7Qn2I.x-aip-live-03?itemId=/content/aip/journal/adva/1/3/10.1063/1.3647985&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/3/10.1063/1.3647985&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/3/10.1063/1.3647985'
Right1,Right2,Right3,