Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3650860
1.
1. F. C. DeLucia, R. S. Harmon, K. L. McNesby, R. J. Winkel and A. W. Miziolek, Appl Opt. 42, 6148 (2003).
http://dx.doi.org/10.1364/AO.42.006148
2.
2. B. Fairman, M. W. Hinds, Simon M. Nelms, D. M. Pennyd and P. Goodalle, J. Anal. At. Spectrom. 13, 233R (1998).
http://dx.doi.org/10.1039/a809075k
3.
3. S. Pandhija, N. K. Rai, A. K. Rai and S. N. Thakur, Appl. Phys. B: Laser and Optics. 98, 231 (2010).
http://dx.doi.org/10.1007/s00340-009-3763-x
4.
4. V. K. Singh, V. Singh, A. K. Rai, S. N. Thakur, P. K. Rai, and J. P. Singh, Appl Opt. 47, (2008) G38.
5.
5. D. A. Cremers and L. J. Radziemski, Handbook of laser- induced breakdown spectroscopy, John Wiley & Sons, Ltd, (2006).
6.
6. J. L. Gottfried, F. C. De Lucia, C. A. Munson and A. W. Miziolek, Spectrochim. Acta B. 62 (2007), 14051411.
http://dx.doi.org/10.1016/j.sab.2007.10.039
7.
7. J. L. Gottfried, F. C. De. Lucia, C. A. Munson and A. W. Miziolek, J. Anal. At. Spectrom. 23, 205 (2008).
http://dx.doi.org/10.1039/b703891g
8.
8. V. I. Babushok, F. C. De Lucia, P. J. Dagdigian, J. L. Gottfried, C. A. Munson, M. J. Nusca and A. W. Miziolek, Spectrochim. Acta B 62B, 1321 (2007).
http://dx.doi.org/10.1016/j.sab.2007.10.029
9.
9. J. D. Winefordner, I. B. Gornushkin, D. Pappas, O. I. Matveev, B. W. Smith, J. Anal. At. Spectrom. 15, 1161(2000).
http://dx.doi.org/10.1039/a910219l
10.
10. F. C. De Lucia, A. C. Samuels, R. S. Harmon, R. A. Walters, K. L. Mcnesby, A. Lapointe, R. J. Winkel and A. W. Miziolek, IEEE Sens. Jour. 5, 681 (2005).
http://dx.doi.org/10.1109/JSEN.2005.848151
11.
11. D. A. Rusak, B. C. Castle, B. W. Smith and J. D. Winefordner, Spectrochim. Acta Part B. 52, 1929 (1997).
http://dx.doi.org/10.1016/S0584-8547(97)00092-X
12.
12. J. D. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith and N. Omenetto, J. Anal. At. Spectrom. 19, 1061 (2004).
http://dx.doi.org/10.1039/b400355c
13.
13. A. Miziolek, V. Palleschi and I. Schechter, Laser Induced Breakdown Spectroscopy, Cambridge University Press, Cambridge, UK, (2006).
14.
14. C. Pasquini, J. Cortez, L. M. C. Silva and F. B. Gonzaga, J. Braz. Chem. Soc. 18, 463 (2007).
http://dx.doi.org/10.1590/S0103-50532007000300002
15.
15. J. Anzano, M. E. Casanova, M. S. Bermudez, R. J. Lasheras, Polym. Test. 25, 623 (2006).
http://dx.doi.org/10.1016/j.polymertesting.2006.04.005
16.
16. M. A. Gondal and M. N. Siddiqui, J Environ Sci Health A 42, 1989 (2007).
http://dx.doi.org/10.1080/10934520701628973
17.
17. J. Anzano, R. J. Lasheras, B. Bonilla and J. Casas, Polym. Test., 27, 705 (2008).
http://dx.doi.org/10.1016/j.polymertesting.2008.05.012
18.
18. Q. Wang, P. Jander, C. F. Begemann and R. Noll, Spectrochim. Acta B. 63 (2008) 1011.
http://dx.doi.org/10.1016/j.sab.2008.06.008
19.
19. S. Rai, A. K. Rai and S. N. Thakur, Appl. Phys. B: Laser and Optics, 91 645 (2008).
http://dx.doi.org/10.1007/s00340-008-3040-4
20.
20. H. L. XU, G. M´Ejean1, W. Liu1, Y. Kamali1, J. F. Daigle1, A. Azarm1, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard and S. L. Chin, Appl. Phys. B 87, 151 (2007).
http://dx.doi.org/10.1007/s00340-006-2536-z
21.
21. W. B. Pearse, and A. G. Gaydon, The identification of molecular spectra, 2nd edition Wiley, New York,(1976).
22.
22. NIST Atomic Spectra Database National Institute of Standards and Technology, Gaithersburg, MD, (2008).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3650860
Loading
/content/aip/journal/adva/1/4/10.1063/1.3650860
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3650860
2011-10-03
2016-09-25

Abstract

The present study is performed for the preparation of a database by accumulating LIBS spectra of 4-nitroaniline and 4-nitrotoluene in air and argon. Changes in the behavior of the molecular bands of the C Swan system and CN violet system as well as of atomic lines of C, H and N in the LIBS signal are appreciable in argon. In order to explore the correlation between observed LIBS signal and molecular composition of these materials, normalized intensities of the emission lines have been estimated for each compound. It has been found that the relative rates of increase/decrease in the normalized intensities for all sets are higher for 4-nitrotoluene in argon. The cause of the higher rate for 4-nitrotoluene might be due to the possession of a distinctive functional group. The ultimate goal behind the whole study is to use this data-base as input for the discrimination of energetic materials.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3650860.html;jsessionid=1f0tA8ik0qlCtpwv0AWOOdMo.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3650860&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3650860&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3650860'
Right1,Right2,Right3,