1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Theoretical study of adsorption of lithium atom on carbon nanotube
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3651182
1.
1. S. Iijima, Nature (London) 354 (1991) 56.
http://dx.doi.org/10.1038/354056a0
2.
2. C. T. White, T. N. Todorov, Nature 393 (1998) 240;
http://dx.doi.org/10.1038/30420
2.J. Kong, E. Yenilmez, T. W. Tombler, W. Kim, H. Dai, R. B. Laughlin, L. Liu, C. S. Jayanthi, S. Y. Wu, Phys. Rev. Lett. 87 (2001) 106801;
http://dx.doi.org/10.1103/PhysRevLett.87.106801
2.A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, Nature (London) 424 (2003) 654.
http://dx.doi.org/10.1038/nature01797
3.
3. B. I. Yakobson, C. J. Brabeck, J. Bernholc, Phys. Rev. Lett. 76 (1996) 2511;
http://dx.doi.org/10.1103/PhysRevLett.76.2511
3.J. P. Lu, Phys. Rev. Lett. 79 (1997) 1297.
http://dx.doi.org/10.1103/PhysRevLett.79.1297
4.
4. M. M. Treacy, T. W. Ebbesen, J. M. Gibson, Nature (London) 381 (1996) 678;
http://dx.doi.org/10.1038/381678a0
4.E. W. Wong, P. E. Sheehan, C. M. Lieber, Science 277 (1997) 1971;
http://dx.doi.org/10.1126/science.277.5334.1971
4.A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. Treacy, Phys. Rev. B 58 (1998) 14013;
http://dx.doi.org/10.1103/PhysRevB.58.14013
4.S. Akita, H. Nishijima, T. Kishida, Y. Nakayama, Jpn. J. Appl. Phys. 39 (2000) 3724.
http://dx.doi.org/10.1143/JJAP.39.3724
5.
5. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68 (1991) 1579;
http://dx.doi.org/10.1103/PhysRevLett.68.1579
5.R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 46 (1992) 1804;
http://dx.doi.org/10.1103/PhysRevB.46.1804
5.R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60 (1992) 2204;
http://dx.doi.org/10.1063/1.107080
6.
6. J. W. Ding, X. H. Yan, J. X. Cao, Phys. Rev. B 66 (2002) 073401;
http://dx.doi.org/10.1103/PhysRevB.66.073401
6.J. W. G. Wildöer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature (London) 391 (1998) 59;
http://dx.doi.org/10.1038/34139
6.T. W. Odom, J.-L. Huang, P. Kim, C. M. Lieber, J. Phys. Chem. 104 (2000) 2794;
http://dx.doi.org/10.1021/jp993592k
6.S. Reich, C. Thomsen, P. Ordejón, Phys. Rev. B 65 (2002) 155411.
http://dx.doi.org/10.1103/PhysRevB.65.155411
7.
7. J. Zhao, A. Buldum, J. Han, J. P. Lu, Phys. Rev. Lett. 85 (2000) 1706.
http://dx.doi.org/10.1103/PhysRevLett.85.1706
8.
8. For a review, M. Inagaki, “New Carbons Control of Structure and Functions”, Chap. 6, Elsevier, Amsterdam (2000).
9.
9. B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou, Chem. Phys. Lett. 307 (1999) 153;
http://dx.doi.org/10.1016/S0009-2614(99)00486-8
9.G. Maurin, Ch. Bousquet, F. Henn, P. Bernier, R. Almairac, B. Simon, Chem. Phys. Lett. 312 (1999) 14.
http://dx.doi.org/10.1016/S0009-2614(99)00886-6
10.
10. Z. Yang, H. Wu, Solid State Ionics 143 (2001) 173;
http://dx.doi.org/10.1016/S0167-2738(01)00852-9
10.S. Komiyama, M. Miyawasi, F. Okino, H. Kataura, H. Touhara, TANSO 216 (2005) 25 (in Japanese).
11.
11. S. Kawasaki, Y. Iwai, I. Watanabe, Mater. Res. Bull. 44 (2009) 415.
http://dx.doi.org/10.1016/j.materresbull.2008.05.003
12.
12. S. Sano, M. Kusunoki, A. Tachibana, The 50th Battery Symposium in Japan, Abstract No. 3A21 (2009).
13.
13. A. Tachibana, Theor. Chem. Acc. 102 (1999) 188;
http://dx.doi.org/10.1007/s002140050490
13.P. Szarek, Y. Sueda, and A. Tachibana, J. Chem. Phys. 129 (2008) 094102.
http://dx.doi.org/10.1063/1.2973634
14.
14. S. Pawel, A. Tachibana: J. Mol. Modeling 13 (2007) 651;
http://dx.doi.org/10.1007/s00894-007-0215-6
14.P. Szarek, K. Urakami, C. Zhou, H. Cheng, A. Tachibana, J. Chem. Phys. 130 (2009) 084111.
http://dx.doi.org/10.1063/1.3072369
15.
15. C. Lee, W. Yann, and R. G. Parr, Phys. Rev. B 37 (1988) 785.
http://dx.doi.org/10.1103/PhysRevB.37.785
16.
16. A. D. Becke, J. Chem. Phys, 98 (1993) 5648.
http://dx.doi.org/10.1063/1.464913
17.
17. M. J. Frisch et al., Gaussian 03, Revision B.05, Gaussian, Inc., Pittsburgh PA (2003).
18.
18. W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 56 (1972) 2257;
http://dx.doi.org/10.1063/1.1677527
18.J. D. Dill, J. A. Pople J. Chem. Phys. 62 (1975) 2921.
http://dx.doi.org/10.1063/1.430801
19.
19. P. C. Hariharan, J. A. Pople, Theo. Chim. Acta 28 (1973) 213.
http://dx.doi.org/10.1007/BF00533485
20.
20. J. S. Binkley, J. A. Pople, W. J. Hehre, J. Am. Chem. Soc. 102 (1980) 939.
http://dx.doi.org/10.1021/ja00523a008
21.
21. T. Pankewitz, W. Klopper, J. Phys. Chem. C 111 (2007) 18917.
http://dx.doi.org/10.1021/jp076538+
22.
22. A. Tachibana, R. G. Parr, Int. J. Quantum Chem. 41 (1992) 527;
http://dx.doi.org/10.1002/qua.560410402
22.A. Tachibana, Int. J. Quantum Chem. 32 (1987) 181;
http://dx.doi.org/10.1002/qua.560320721
22.A. Tachibana, Int. J. Quantum Chem. 57 (1996) 423;
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)57:3<423::AID-QUA15>3.0.CO;2-4
22.A. Tachibana, Int. J. Quantum Chem. 100 (2004) 981;
http://dx.doi.org/10.1002/qua.20258
22.A. Tachibana, K. Nakamura, K. Sakata, T. Morisaki, Int. J. Quantum Chem. 74 (1999) 669;
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)74:6<669::AID-QUA8>3.0.CO;2-O
22.A. Tachibana, J. Chem. Phys. 115 (2001) 3497;
http://dx.doi.org/10.1063/1.1384012
22.A. Tachibana, Stress Induced Phenomena in Metallization, ed. S. P. Baker (American Institute of Physics, New York, 2002), pp. 201211;
22.A. Tachibana, Reviews in modern quantum chemistry:A celebration of the contribution of Robert Parr ed. K. D. Sen (World scientific, Singapore, 2002) Vol. 2, pp. 13271366;
22.A. Tachibana, Fundamental Perspectives in Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin, ed. E. J. Brrmändas and E. S. Kryacho (Kluwer Academic, Dordrecht, 2003) vol. II, p. 211.
23.
23. A. Tachibana, J. Mol. Modeling 11 (2005) 301;
http://dx.doi.org/10.1007/s00894-005-0260-y
23.A. Tachibana, J. Mol. Struct.: (THEOCHEM) 943 (2010) 138.
http://dx.doi.org/10.1016/j.theochem.2009.11.018
24.
24. M. Senami, K. Ichikawa, K. Doi, P. Szarek, K. Nakamura, A. Tachibana, Molecular Regional DFT program package, ver. 3 (Tachibana Lab., Kyoto University, Kyoto, 2008).
25.
25. W. Andreoni, A. Curioni, Appl. Phys. A 66 (1998) 299;
http://dx.doi.org/10.1007/s003390050670
25.T. Aree, T. Kerdcharoen, S. Hannongbua, Chem. Phys. Lett. 285 (1998) 221.
http://dx.doi.org/10.1016/S0009-2614(98)00031-1
26.
26. P. Dubot, P. Cenedese, Phys. Rev. B 63 (2001) 241402R.
http://dx.doi.org/10.1103/PhysRevB.63.241402
27.
27. V. Meunier, J. Kephart, C. Roland, J. Bernholc, Phys. Rev. Lett. 88 (2002) 075506.
http://dx.doi.org/10.1103/PhysRevLett.88.075506
28.
28. A. A. Kuzubov, P. V. Avramov, S. G. Ovchinnikov, S. A. Varganov, F. N. Tomilin, Phys. Sol. State 43 (2001) 1721.
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3651182
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The (12,0) SWCNT model. Dark (black) circles are carbon atoms, and light (blue) ones are hydrogen atoms.

Image of FIG. 2.

Click to view

FIG. 2.

Optimized structures of the models of (12,0) SWCNTs with one lithium atom. Panels (a) and (b) show the structures of the CNT with one inside and outside lithium atom, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Distribution of the difference of electron density. Panels (a) and (b) are the results of the lithium adsorption on the inside of the CNT, while panels (c) and (d) are those on the outside. Panels (a) and (c) show the plane perpendicular to the axis. Panel (b) (panel (d)) shows the plane including the Li, C(2), and C(3) atoms (Li, C(1), and C(4)), where a carbon atom specified in a parenthesis corresponds to that shown in Fig. 2. The circles in panels (a) and (c) mean the cross section of our CNT model.

Image of FIG. 4.

Click to view

FIG. 4.

The zero kinetic energy density surface. Panels (a) and (b) are the results of the lithium adsorption on the inside and outside of the CNT, respectively. Panel (b) (panel (d)) shows the plane including the Li, C(2), and C(3) atoms (Li, C(1), and C(4)), where a carbon atom specified in a parenthesis corresponds to that shown in Fig. 2.

Image of FIG. 5.

Click to view

FIG. 5.

Regional chemical potential density of our CNT model without the lithium atom on the zero kinetic energy surface.

Image of FIG. 6.

Click to view

FIG. 6.

The optimized structures of the models of (12,0) SWCNTs with lithium atoms. In panels (a)-(d), two, three, four, and six lithium atoms are attached on the inside of the CNT.

Image of FIG. 7.

Click to view

FIG. 7.

Adsorption energy as the function of the number of lithium atoms.

Image of FIG. 8.

Click to view

FIG. 8.

NBO charge of lithium atoms as the function of the number of lithium atoms. The solid line is the total charge, and the dashed line is the average for the charge at the number of lithium atoms.

Image of FIG. 9.

Click to view

FIG. 9.

Distribution of the difference of electron density. Panels (a), (c), (e), and (g) show the plane perpendicular to the axis. Panels (a), (c), (e), and (g) show the plane perpendicular to the axis. Panels (b), (d), and (h) show the plane including the Li, C(2), and C(6) atoms, and panel (f) is for the Li, C(2), and C(5) atoms, where these carbon atoms are the nearest two C atoms. The circle in panels (a), (c), (e), and (g) means the cross section of our CNT model.

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3651182
2011-10-03
2014-04-18

Abstract

We investigate the adsorption of lithium atoms on the surface of the (12,0) single wall carbon nanotube(SWCNT) by using ab initio quantum chemical calculations. The adsorption of one lithium atom on the inside of this SWCNT is favored compared to the outside. We check this feature by charge transfer and regional chemical potential density. The adsorption of multiple lithium atoms on the interior of the SWCNT is studied in terms of adsorption energy and charge transfer. We show that repulsive force between lithium atoms destabilizes a system for the large number of lithium atoms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3651182.html;jsessionid=1ejgqf9fs0150.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3651182&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Theoretical study of adsorption of lithium atom on carbon nanotube
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3651182
10.1063/1.3651182
SEARCH_EXPAND_ITEM