Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. F. J. Himpsel, J. A. Knapp, J. A. VanVecten, and D. E. Eastman, Phys. Rev. B 20, 624 (1979).
2. W. Zhu, G. P. Kochanski and S. Jin, Science 282,1471 (1998).
3. B. Dischler, C. Wild, W. M-Sebert, and P. Koidl, Physica B 185, 217 (1993).
4. T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, R. P.H. Chang, Diam. and Relat. Mater. 11, 43 (2002).
5. J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen and J. M. Gibson, J. Appl. Phys. 81, 2235 (2002).
6. E. Rohrer, C. F.O. Graeff, R. Janssen, C. E. Nebel, H. Guettler and R. Zachai, Phys. Rev.B 54, 7874 (1996).
7. D. Zhou, A. R. Krauss, L. C. Qin, T. G. McCauley, D. M. Gruen, T. D. Corrigan, R. P.H. Chang, H. Gnaser, J. Appl. Phys. 82, 4546 (1997).
8. R. Kalish, Carbon 37, 781 (1999).
9. S. Talapatra, J. Y. Cheng, N. Chakrapani, S. Trasobares, A. Cao, R. Vajtai, M. B. Huang, P. M. Ajayan, Nanotechnology 17, 305 (2006).
10. S. Prawer, R. Kalish, Phys. Rev. B 51, 15711 (1995).
11. K. Panda B. Sundaravel, B. K. Panigrahi, P. Magudapathy, D. N. Krishna, K. G.M. Nair, H. C. Chen, I. N. Lin; J. Apply. Phys. 110(4) 122115 (2011).
12. E. J. Correa, Y. Wu, J. G. Wen, R. Chandrasekharan and M. A. Shannon, J. Appl. Phys. 102, 113706 (2007).
13. J. Krauser, J.-H , Zollondz, A. Weidinger, C. Trautmann, J. Appl. Phys. 94, 1959 (2003).
14. N. Koenigsfeld, H. Hofsass, D. Schwen, A. Weidinger, C. Trautmann and R. Kalish, Diam. and Relat. Mater. 12, 469 (2003).
15. S. Prawer, A. Hoffman, R. Kalish, Appl. Phys. Lett. 57, 2187 (1990).
16. W. Zhu, G. P. Kochanski, S. Jin, L. Seibles, D. C. Jacobson, M. McCormac and A. E. White, Appl. Phys. Lett. 67, 1157 (1995).
17. N. Dilawar, R. Kapil, V. D. Vankar, D. K. Avasthi, D. Kabiraj, G. K. Mehta, Thin Solid Films 305, 88 (1997).
18. A. Dunlop, G. Jaskierowicz, P. M. Ossi and Della-Negra, Phys. Rev. B 76, 155403 (2007).
19. P. T. Pandey, G. L. Sharma, D. K. Avasthi, V. D. Vankar, Vacuum 72, 297(2004).
20. P. M. Koinkar, R. S. Khairnar, S. A. Khan, R. P. Gupta, D. K. Avasthi and M. A. More, Nucl. Instr. and Meth. B244, 217 (2006).
21. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Ranges of Ions in Solids, Pergamon, New York, 1985.
22. R. H. Fowler, L. Nordheim, Proc. R. Soc. A 119, 173 (1928).
23. I. N. Lin, H. C. Chen, C. S. Wang, Y. R. Lee, and C. Y. Lee; Nanocrystalline diamond microstructures from Ar/H2/CH4-plasma chemical vapour deposition, CrystEngComm in press (2011).
24. Z. Sun, J. R. Shi, B. K. Tay, S. P. Lau; Diam. and Relat. Mater. 9, 1979 (2000).
25. A. C. Ferrari and J. Robertson; Phys. Rev. B 63, 121405 (2001).
26. J. Michler, Y. Von Kaenel, J. Stiegler, and E Blank; J. Appl. Phys. 81(1) 187 (1998).
27. A. C. Ferrari and J. Robertson; Phys. Rev. B 61, 14095 (2000).

Data & Media loading...


Article metrics loading...



The effect of 2.245 GeV Au-ion irradiation and post-annealing processes on the microstructure and electron field emission (EFE) properties of diamondfilms was investigated. For the microcrystalline diamond(MCD)films, Au-ion irradiation with a fluence of approximately 8.4×1013 ions/cm2 almost completely suppressed the EFE properties of the films. Post-annealing the Au-ion irradiatedMCDfilms at 1000°C for 1 h effectively restored these properties. In contrast, for ultra-nanocrystalline diamond(UNCD)films, the Au-ion irradiation induced a large improvement in the EFE properties, and the post-annealing process slightly degraded the EFE properties of the films. The resulting EFE behavior was still better than that of pristine UNCDfilms.TEM examination indicated that the difference in Au-ion irradiation/post-annealing effects on the EFE properties of the MCD and UNCDfilms is closely related to the different phase transformation process involved. This difference is dependent on the different granular structures of these films. The MCDfilms with large-grain microstructure contain very few grain boundaries of negligible thickness, whereas the UNCDfilms with ultra-small-grain granular structure contain abundant grain boundaries of considerable thickness. Au-ion irradiation disintegrated the large grains in the MCDfilms into small diamond clusters embedded in an amorphous carbon (a-C) matrix that suppressed the EFE properties of the MCDfilms. In contrast, the Au-ion irradiation insignificantly altered the crystallinity of the grains of the UNCDfilms but transformed the grain boundary phase into nano-graphite, enhancing the EFE properties. The post-annealing process recrystallized the residual a-C phase into nano-graphites for both films.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd