1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Dynamically controlled charge sensing of a few-electron silicon quantum dot
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3654496
1.
1. M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko, Phys. Rev. Lett. 70, 3481 (1993).
http://dx.doi.org/10.1103/PhysRevLett.70.1311
2.
2. J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven, Phys. Rev. B 67, 161308 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.161308
3.
3. C. B. Simmons, M. Thalakulam, N. Shaji, L. J. Klein, H. Qin, R. H. Blick, D. E. Savage, M. G. Lagally, S. N. Coppersmith, and M. A. Eriksson, Appl. Phys. Lett. 91, 213103 (2007).
http://dx.doi.org/10.1063/1.2816331
4.
4. J. M. Elzerman, R. Hanson, L. H. W. Van Beveren, B. Witkamp, L. M. K. Vandersypen, and L. P. Kouwenhoven, Nature 430, 431 (2004).
http://dx.doi.org/10.1038/nature02693
5.
5. A. Morello, J. J. Pla, F. A. Zwanenburg, K. W. Chan, K. Y. Tan, H. Huebl, M. Möttönen, C. D. Nugroho, C. Yang, J. A. van Donkelaar, A. D. C. Alves, D. N. Jamieson, C. C. Escott, L. C. L. Hollenberg, R. G. Clark and A. S. Dzurak, Nature 467, 687 (2010).
http://dx.doi.org/10.1038/nature09392
6.
6. L. DiCarlo, H. J. Lynch, A. C. Johnson, L. I. Childress, K. Crockett, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 92, 226801 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.226801
7.
7. J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. Lett. 93, 186802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.186802
8.
8. A. C. Johnson, J. R. Petta, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Phys. Rev. B 72, 165308 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.165308
9.
9. M. C. Cassidy, A. S. Dzurak, R. G. Clark, K. D. Petersson, I. Farrer, D. A. Ritchie, and C. G. Smith, Appl. Phys. Lett. 91, 222104 (2007).
http://dx.doi.org/10.1063/1.2809370
10.
10. C. B. Simmons, M. Thalakulam, B. M. Rosemeyer, B. J. Van Bael, E. K. Sackmann, D. E. Savage, M. G. Lagally, R. Joynt, M. Friesen, and S. N. Coppersmith, Nano Lett. 9, 3234 (2009).
http://dx.doi.org/10.1021/nl9014974
11.
11. E. P. Nordberg, H. L. Stalford, R. Young, G. A. Ten Eyck, K. Eng, L. A. Tracy, K. D. Childs, J. R. Wendt, R. K. Grubbs, J. Stevens, M. P. Lily, M. A. Eriksson and M. S. Carroll, Appl. Phys. Lett. 95, 202102 (2009).
http://dx.doi.org/10.1063/1.3259416
12.
12. M. Xiao, M. G. House and H. W. Jiang, Phys. Rev. Lett. 104, 096801 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.096801
13.
13. Y. Hu, H. O. H. Churchill, D. J. Reilly, J. Xiang, C. M. Lieber, and C. M. Marcus, Nat. Nanotechnology 2, 622 (2007).
http://dx.doi.org/10.1038/nnano.2007.302
14.
14. M. J. Biercuk, D. J. Reilly, T. M. Buehler, V. C. Chan, J. M. Chow, R. G. Clark and C. M. Marcus, Phys. Rev. B 73, 201402R (2006).
http://dx.doi.org/10.1103/PhysRevB.73.201402
15.
15. L. J. Wang, G. Cao, T. Tu, H. O. Li, C. Zhou, X. J. Hao, Z. Su, G. C. Guo, H. W. Jiang, and G. P. Guo, Appl. Phys. Lett. 97, 262113 (2010).
http://dx.doi.org/10.1063/1.3533021
16.
16. G. J. Podd, S. J. Angus, D. A. Williams, and A. J. Ferguson, Appl. Phys. Lett. 96, 082104 (2010).
http://dx.doi.org/10.1063/1.3318463
17.
17. S. J. Angus, A. J. Ferguson, A. S. Dzurak, and R. G. Clark, Nano Lett. 7, 2051 (2007).
http://dx.doi.org/10.1021/nl070949k
18.
18. W. H. Lim, F. A. Zwanenburg, H. Huebl, M. Möttönen, K. W. Chan, A. Morello, and A. S. Dzurak, Appl. Phys. Lett. 95, 242102 (2009).
http://dx.doi.org/10.1063/1.3272858
19.
19. S. J. Angus, A. J. Ferguson, A. S. Dzurak and R. G. Clark, Appl. Phys. Lett. 92, 112103 (2008).
http://dx.doi.org/10.1063/1.2831664
20.
20. W. H. Lim, H. Huebl, L. H. Willems van Beveren, S. Rubanov, P. G. Spizzirri, S. J. Angus, R. G. Clark and A. S. Dzurak, Appl. Phys. Lett. 94, 173502 (2009).
http://dx.doi.org/10.1063/1.3124242
21.
21. T. M. Buehler, V. Chan, A. J. Ferguson, A. S. Dzurak, F. E. Hudson, D. J. Reilly, A. R. Hamilton, R. G. Clark, D. N. Jamieson, C. Yang, C. I. Pakes and S. Prawer, Appl. Phys. Lett. 88, 192101 (2006).
http://dx.doi.org/10.1063/1.2203740
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3654496
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) SEM image of the silicon MOS device, the bottom one operating as the dot and the upper one as the charge sensor. (b) The 3D schematic model of the device. (c) Block diagram of the second-order feedback control system used to ensure stable and continuous charge sensing of the quantum dot by the SET sensor. (d) Physical interpretation of mutual capacitance ratio, A C = C PD/C PS.

Image of FIG. 2.

Click to view

FIG. 2.

(a) SET sensor current I S without compensation (magenta) and dot transport current I D (black). Fixed compensation is applied by linearly adjusting the sensor gate potential V PS and the compensated I S (dark blue) then operates within a fixed range, with a corresponding transconductance dI S/dV PD (orange). (b) Sensor error current i S with dynamic feedback compensation applied while ramping V PD up (red) and down (green), with 5 overlaid traces. And modelled i S for the same range of experimental parameters. I S operating point is set to I 0 = 50 pA and the traces have been offset for clarity. Here, β = 4 MΩ and γ = 80 kΩ.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Stability diagram of I S showing the charge transitions. I S now has an operating point I 0 of 80 pA.(b) Mutual capacitance ratio A C (C PD/C PS), with positive sweeping only, showing the change in A C when charge movement occurs.

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3654496
2011-10-12
2014-04-24

Abstract

We report charge sensing measurements of a siliconmetal-oxide-semiconductorquantum dot using a single-electron transistor as a chargesensor with dynamic feedback control. Using digitally-controlled feedback, the sensor exhibits sensitive and robust detection of the charge state of the quantum dot, even in the presence of charge drifts and random charge upset events. The sensor enables the occupancy of the quantum dot to be probed down to the single electron level.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3654496.html;jsessionid=560i59r5mbqvq.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3654496&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dynamically controlled charge sensing of a few-electron silicon quantum dot
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3654496
10.1063/1.3654496
SEARCH_EXPAND_ITEM