Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Science 306, 1351 (2004).
4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
5. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phy. Rev. Lett. 95, 223902 (2005).
6. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, Adv. Mater. 17, 2547 (2005).
7. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
8. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, Phys. Rev. Lett. 103, 213902 (2009).
9. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener and S. Linden, Opt. Express 18, 6545 (2010).
10. N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
11. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, Phy. Rev. B 79, 085111 (2009).
12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
13. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nat. Photonics 3, 157 (2009).
14. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
15. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, Appl. Phys. Lett. 98, 091107 (2011).
16. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, Phys. Rev. Lett. 103, 147401 (2009).
17. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, T. Ren, J. J. Mock, S. Y. Cho, N. M. Jokerst, and D. R. Smith, Appl. Phys. Lett. 90, 092508 (2007).
18. Z.-S. Cao, J. Pan, Z. Chen, P. Zhan, N.-B. Min, and Z.-L. Wang, Chin. Phys. Lett. 28, 057302 (2011).
19. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
20. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, Langmuir 26, 7859 (2010).
21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, Appl. Opt. 22, 1099 (1983).

Data & Media loading...


Article metrics loading...



We report experimentally that for a particular high-symmetry planar periodic arrangement of metal double-triangle nanoparticle arrays fabricated via angle resolved nanosphere lithography, both anti-symmetric and symmetric magnetic resonances can be explicitly excited at off-normal incidence. Further, we demonstrate that the underlying mechanism for the formation of these two modes is a result of direct interactions with the incident electric and magnetic fields, respectively. As a consequence, with increasing the incident angle there is a relatively small blue-shift in the transmission for the electric-field induced anti-symmetric mode, while a remarkable red-shift is observed for the magnetic-field induced symmetric mode.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd