Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3655439
1.
1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
2.
2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
3.
3. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Science 306, 1351 (2004).
http://dx.doi.org/10.1126/science.1105371
4.
4. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, Th. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.203901
5.
5. J. Zhou, Th. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phy. Rev. Lett. 95, 223902 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.223902
6.
6. C. Enkrich, F. Pérez-Willard, D. Gerthsen, J. Zhou, T. Koschny, C. M. Soukoulis, M. Wegener, and S. Linden, Adv. Mater. 17, 2547 (2005).
http://dx.doi.org/10.1002/adma.200500804
7.
7. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
http://dx.doi.org/10.1364/OL.31.001259
8.
8. I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, Phys. Rev. Lett. 103, 213902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.213902
9.
9. N. Feth, M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener and S. Linden, Opt. Express 18, 6545 (2010).
http://dx.doi.org/10.1364/OE.18.006545
10.
10. N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
http://dx.doi.org/10.1002/adma.200801917
11.
11. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, Phy. Rev. B 79, 085111 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.085111
12.
12. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Nat. Mater. 7, 31 (2008).
http://dx.doi.org/10.1038/nmat2072
13.
13. N. Liu, H. Liu, S. N. Zhu, and H. Giessen, Nat. Photonics 3, 157 (2009).
http://dx.doi.org/10.1038/nphoton.2009.4
14.
14. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.144440
15.
15. I. A. I. Al-Naib, C. Jansen, N. Born, and M. Koch, Appl. Phys. Lett. 98, 091107 (2011).
http://dx.doi.org/10.1063/1.3562372
16.
16. H. Tao, A. C. Strikwerda, K. Fan, W. J. Padilla, X. Zhang, and R. D. Averitt, Phys. Rev. Lett. 103, 147401 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.147401
17.
17. T. Driscoll, G. O. Andreev, D. N. Basov, S. Palit, T. Ren, J. J. Mock, S. Y. Cho, N. M. Jokerst, and D. R. Smith, Appl. Phys. Lett. 90, 092508 (2007).
http://dx.doi.org/10.1063/1.2679766
18.
18. Z.-S. Cao, J. Pan, Z. Chen, P. Zhan, N.-B. Min, and Z.-L. Wang, Chin. Phys. Lett. 28, 057302 (2011).
http://dx.doi.org/10.1088/0256-307X/28/5/057302
19.
19. C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B 105, 5599 (2001).
http://dx.doi.org/10.1021/jp010657m
20.
20. J. Sun, C. J. Tang, P. Zhan, Z. L. Han, Z. S. Cao, and Z. L. Wang, Langmuir 26, 7859 (2010).
http://dx.doi.org/10.1021/la9047165
21.
21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, Appl. Opt. 22, 1099 (1983).
http://dx.doi.org/10.1364/AO.22.001099
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3655439
Loading
/content/aip/journal/adva/1/4/10.1063/1.3655439
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3655439
2011-10-12
2016-12-10

Abstract

We report experimentally that for a particular high-symmetry planar periodic arrangement of metal double-triangle nanoparticle arrays fabricated via angle resolved nanosphere lithography, both anti-symmetric and symmetric magnetic resonances can be explicitly excited at off-normal incidence. Further, we demonstrate that the underlying mechanism for the formation of these two modes is a result of direct interactions with the incident electric and magnetic fields, respectively. As a consequence, with increasing the incident angle there is a relatively small blue-shift in the transmission for the electric-field induced anti-symmetric mode, while a remarkable red-shift is observed for the magnetic-field induced symmetric mode.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3655439.html;jsessionid=or_J1wiTJtvFNM2MNfC_W4g7.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3655439&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3655439&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3655439'
Right1,Right2,Right3,