Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3655567
1.
1. K. Otsuka and X. Ren, Progr. Mater. Sci. 50, 511 (2005).
http://dx.doi.org/10.1016/j.pmatsci.2004.10.001
2.
2. K. Otsuka and M. Wayman Eds, Shape memory materials (Cambridge University Press,Cambridge, 1998).
3.
3. J. Van Humbeeck, J. alloys and Compds. 355, 58 (2003).
http://dx.doi.org/10.1016/S0925-8388(03)00268-8
4.
4. J. Van Humbeeck, in: Mechanical Spectroscopy 2001 with Applications to Materials Science, R. Schaller, G. Fantozzi and G. Gremaud Eds. (Trans Tech Publications, Zurich, 2001).
5.
5. F. M. Mazzolai, A. Biscarini, R. Campanella, B. Coluzzi and G. Mazzolai, Recent Res. Develop. Mat. Sci. 4, 191 (2003).
6.
6. A. Biscarini, B. Coluzzi, R. Campanella, G. Mazzolai, L. Trotta, A. Tuissi and F. M. Mazzolai, Acta Mater. 47, 4525 (1999).
http://dx.doi.org/10.1016/S1359-6454(99)00337-7
7.
7. F. M. Mazzolai, A. Biscarini, R. Campanella, B. Coluzzi, G. Mazzolai, A. Rotini and A. Tuissi, Acta Mater. 51. 573 (2003).
http://dx.doi.org/10.1016/S1359-6454(02)00439-1
8.
8. B. Coluzzi, A. Biscarini, G. Mazzolai, F. M. Mazzolai and A. Tuissi, Scripta Mater. 51 (2004) 199.
http://dx.doi.org/10.1016/j.scriptamat.2004.04.021
9.
9. F. M. Mazzolai, A. Biscarini, B. Coluzzi and G. Mazzolai, Appl. Phys. Lett. 85, 2756 (2004).
http://dx.doi.org/10.1063/1.1799247
10.
10. A. Biscarini, B. Coluzzi, G. Mazzolai and F. M. Mazzolai, J. Alloys and Compds. 355 52 (2003).
http://dx.doi.org/10.1016/S0925-8388(03)00267-6
11.
11. B. Coluzzi, A. Biscarini, G. Mazzolai, F. M. Mazzolai and A. Tuissi, J. Eng. Mater. and Technology 128, 253 (2006).
http://dx.doi.org/10.1115/1.2204848
12.
12. B. Coluzzi, A. Biscarini, G. Mazzolai, F. M. Mazzolai, A. Tuissi and E. Villa, Key Eng. Mater. 319, 1 (2006).
http://dx.doi.org/10.4028/www.scientific.net/KEM.319.1
13.
13. B. Coluzzi, A. Biscarini, G. Mazzolai and F. M. Mazzolai: Mater. Sci. and Eng. A 442, 414 (2006).
http://dx.doi.org/10.1016/j.msea.2006.03.125
14.
14. F. M. Mazzolai, A. Biscarini, B. Coluzzi, G. Mazzolai, E. Villa and A. Tuissi, Acta Mater. 55, 4243 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.03.020
15.
15. E. Villa, A. Tuissi, B. Coluzzi, A. Biscarini, G. Mazzolai and F. M. Mazzolai, Mater. Sci. and Eng. A 521-522, 175 (2009).
http://dx.doi.org/10.1016/j.msea.2008.09.153
16.
16. T. Sagaguchi, T. Ueura, Y. Kogo, S. Takeuchi and N. Igata, Mater. Trans. 46, 1306 (2005).
http://dx.doi.org/10.2320/matertrans.46.1306
17.
17. T. Ueura, T. Sagaguchi, N. Igata and S. Takeuchi, Key Eng. Mater. 319, 39 (2005).
http://dx.doi.org/10.4028/www.scientific.net/KEM.319.39
18.
18. G. Fan, Y. Zhou, K. Otsuka and X. Ren, Appl. Phys. Lett. 89, 161902 (2006).
http://dx.doi.org/10.1063/1.2363173
19.
19. G. Fan, Y. Zhou, K. Otsuka, X. Ren, K. Nakamura, T. Ohba, T. Suzuki, I. Yoshida and F. Yin, Acta Mater. 54, 5221 (2006).
http://dx.doi.org/10.1016/j.actamat.2006.06.018
20.
20. G. Fan, Y. Zhou, K. Otsuka, X. Ren, K. Nakamura, T. Ohba, T. Suzuki, I. Yoshida and F. Yin, Acta Mater. 55, 4243 (2007).
http://dx.doi.org/10.1016/j.actamat.2007.01.015
21.
21. G. Fan, K. Otsuka, X. Ren and F. Yin, Acta Mater. 56, 632 (2008).
http://dx.doi.org/10.1016/j.actamat.2007.10.013
22.
22. G. Fan, Y. Zhou, K. Otsuka, X. Ren, T. Suzuki, and F. Yin, Mater. Sci. and Eng. A 521-522, 178 (2009).
http://dx.doi.org/10.1016/j.msea.2008.09.086
23.
23. S. Sarkar, X. Ren, and K. Otsuka, Phys. Rev. Lett. 95, 205702 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.205702
24.
24. Y. Wang, X. Ren and K. Otsuka, Phys. Rev. Lett. 9, 225703 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.225703
25.
25. Y. Wang, X. Ren, K. Otsuka and A. Saxena, Phys. Rev B 76, 132201 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.132201
26.
26. Y. Wang, X. Ren, K. Otsuka and A. Saxena, Acta Mater. 56, 2884 (2008).
27.
27. Y. Wang, X. Ren and K. Otsuka, Mater. Sci Forum, 583, 67 (2008).
http://dx.doi.org/10.4028/www.scientific.net/MSF.583.67
28.
28. Y. Zhou, D. Xhue, X. Ding, K. Otsuka, J. Sun and X. Ren, Appl. Phys. Lett. 95, 151906 (2009).
http://dx.doi.org/10.1063/1.3249580
29.
29. X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castán, M. Porta, A. Planes and A. Saxena, MRS Bull. 34, 838 (2009).
http://dx.doi.org/10.1557/mrs2009.234
30.
30. Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka and X. Ren, Phys. Rev. B 81, 224102 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.224102
31.
31. X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Ya. Tian, S. Hou, and X. Ding, Phil. Mag. 90, 141 (2010).
http://dx.doi.org/10.1080/14786430903074771
32.
32. G. Gremaud, J. E. Bidaux and W. Benoit, Helv. Physica Acta 60 (1987) 947.
33.
33. J. X. Zhang, P. C. W. Fung and W. G. Zen, Phys. Rev. B, 52 (1995) 268.
http://dx.doi.org/10.1103/PhysRevB.52.268
34.
34. A. Amini, Y. He, Q. P. Sun, Mater. Lett. 65, 464 (2011).
http://dx.doi.org/10.1016/j.matlet.2010.10.026
35.
35. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, N. Y., 1972).
36.
36. T. Hara, T. Ohba, E. Okanishi and K. Otsuka, Mater. Trans., JIM, 38, 11 (1997).
37.
37. V. N. Khachin, S. A. Muslov, V. G. Pushin and Y. I. Chumliakov, Sov. Phys. Dokl. 32, 606 (1987).
38.
38. C. M. Hwang and C. M. Wayman, Scripta Metall. 17, 381 (1983).
http://dx.doi.org/10.1016/0036-9748(83)90177-1
39.
39. T. H. Nam, T. Saburi and T. Shimizu, Mater. Trans. JIM. 31, 959 (1990).
40.
40. R. R. Hasiguti and K. Iwasaki, J. Appl. Phys. 39, 2182 (1968).
http://dx.doi.org/10.1063/1.1656523
41.
41. G. Mazzolai, J. alloys and Compds. 446-447, 204 (2007).
http://dx.doi.org/10.1016/j.jallcom.2007.01.098
42.
42. T. Kakeshita et al. Jpn. J. Appl. Phys. 37, 2535 (1998).
http://dx.doi.org/10.1143/JJAP.37.2535
43.
43. A. Biscarini, B. Coluzzi, G. Mazzolai and F. M. Mazzolai, J. Alloys and Compds. 404-405, 261 (2005).
http://dx.doi.org/10.1016/j.jallcom.2004.12.159
44.
44. J. S. Zhu, R. Schaller and W. Benoit, Phys. Stat. Sol. A 108, 613 (1988).
http://dx.doi.org/10.1002/pssa.2211080216
45.
45. R. Schmidt, M. Schlereth, H. Wipf, W. Assumus and M. Muellner, J. Phys. Cond. Matter 1, 2473 (1989).
http://dx.doi.org/10.1088/0953-8984/1/14/003
46.
46. H. C. Lin, S. K. Wu and T. S. Chou, J. Alloys and Compds. 355, 90 (2003).
http://dx.doi.org/10.1016/S0925-8388(03)00283-4
47.
47. I. Yoshida and K. Otsuka, Key Eng. Mater. 319, 33 (2006).
http://dx.doi.org/10.4028/www.scientific.net/KEM.319.33
48.
48. B. Coluzzi, A. Biscarini, R. Campanella, G. Mazzolai and F. M. Mazzolai, J. Phys. IV France 11, Pr895 (2001).
49.
49. A. Biscarini, R. Campanella, B. Coluzzi, L. Di Masso, G. Mazzolai and F. M. Mazzolai, Proc. Internat. Conf. on Solid-Solid Phase Transformations ‘99, M. Koiwa, K. Otsuka and T. Miyazaki Editors, JIM. 1999.
50.
50. I. Yoshida and S. Yoshida, Solid State Phenomena 89, 315 (2003).
http://dx.doi.org/10.4028/www.scientific.net/SSP.89.315
51.
51. B. Coluzzi, A. Biscarini, R. Campanella, L. Trotta, G. Mazzolai, A. Tuissi and F. M. Mazzolai, Acta Mater, 47, 1965 (1999).
http://dx.doi.org/10.1016/S1359-6454(99)00031-2
52.
52. S. K. Wu, H. C. Lin and T. S. Chou, Acta metal. Mater. 38, 95 (1990).
http://dx.doi.org/10.1016/0956-7151(90)90137-6
53.
53. Y. C. Lo, S. K. Wu and H. E. Horng, Acta Metall. Mater. 41, 747 (1993).
http://dx.doi.org/10.1016/0956-7151(93)90007-F
54.
54. N. Igata, N. Urahashi, M. Sasaki and Y. Kogo, J. Alloys and Comps. 355, 85 (2003).
http://dx.doi.org/10.1016/S0925-8388(03)00282-2
55.
55. C. Craciunescu and M. Wuttig, Thin Solid Films 379, 173 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01556-X
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3655567
Loading
/content/aip/journal/adva/1/4/10.1063/1.3655567
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3655567
2011-10-13
2016-12-09

Abstract

This review is focused on the influence of interstitial hydrogen and alloy compositional changes on the internal friction (IF) spectrum and elasticYoung's modulus (E) of NiTi based shape memoryalloys. In the martensitically transforming binary alloysNi50+xTi50-x (x≤1.3) vacuum annealed and furnace cooled (H-free), besides the well known IF peak associated with the martensitic transition two additional non-thermally activated peaks (P150K and P200K′) are present due to some sort of second-order phase transitions. In martensitically transformingNi50+xTi50-x and Ti50Ni50-yCuyalloysdoped with hydrogen two thermally activated peaks, PTWH and PH, appear which originate from stress-assisted motions of H-twin boundary complexes and isolated H-elastic dipoles (Snoek effect), respectively. In a H-free martensitically non-trasformingalloy (x=2), besides the non-thermally activated peak P150K, a frequency dependent dip is observed in the E(T) curves at a temperature Tg. This dip is similar to that reported in the literature for two other non-transforming alloys (x=1.5 and x=2.5), which, however, were also found to exhibit a thermally activated IF peak just below Tg. Most likely, these two alloys were contaminated with hydrogen during the preliminary solubilization in argon atmosphere and subsequent water quenching treatments given to them. The Young's modulus dip and the lower temperature IF peak have been both attributed to a novel type of phase transition reported in the literature as “strain glass transition”. The introduction of hydrogen into the non-transforming alloy with x=2 enhances the Young's modulus dip and gives rise to the H-Snoek peak PH just below Tg, which clearly appears to be the counterpart of the peak observed in the alloys (x=1.5 and x=2.5) solubilized in argon atmosphere and water quenched. The conclusion was reached in the present work that this last peak is not related to the strain glass transition but is rather an H-Snoek relaxation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3655567.html;jsessionid=7Gm4ABWdgb1TUD1qM7Z_f0Ik.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3655567&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3655567&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3655567'
Right1,Right2,Right3,