Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Le Coarer, S. Blaize, P. Benech, I. Stefanon, A. Morand, G. Lérondel, G. Leblond, P. Kern, J-M. Fédéli, and P. Royer, Nature Photonics 1, 473478 (2007).
2. J. Ferrand, G. Custillon, S. Kochtcheev, S. Blaize, A. Morand, G. Leblond, P. Benech, P. Royer, P. Kern, and E. Le Coarer, Proceedings of SPIE 7010, 701046701046 (2008).
3. G. Lippmann, Comptes Rendus de l’Académie des Sciences (Paris) 274275 (1891).
4. G. Lippmann, Comptes Rendus de l’Académie des Sciences (Paris) 92102 (1894).
5. E. Le Coarer, L. G. Venancio, P. Kern, J. Ferrand, P. Puget, M. Ayraud, C. Bonneville, B. Demonte, J. Boussey, D. Barbier, S. Blaize, and T. Gonthiez, in International Conference on Space Optics, Rhodes (2010).
6. G. N. Gol'tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. M. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, Applied Physics Letters 79, 705 (2001).
7. L. Maingault, M. Tarkhov, I. Florya, A. Semenov, R. Espiau de Lamaestre, P. Cavalier, G. N. Gol'tsman, J-P. Poizat, and J-C. Villégier, Journal of Applied Physics 107, 116103 (2010).
8. P. Cavalier, C. Constancias, P. Feautrier, L. Maingault, A. Morand, and J-C. Villégier, IEEE Transactions on Applied Superconductivity 21, 327331 (2011).
9. J-C. Villégier, S. Bouat, P. Cavalier, R. Setzu, R. Espiau de Lamaestre, C. Jorel, P. Odier, B. Guillet, L. Mechin, M. P. Chauvat, and P. Ruterana, IEEE Transactions on Applied Superconductivity 19, 33753378 (2009).
10. X. Hu, D. Masciarelli, E. A. Dauler, and K. K. Berggren, IEEE Transactions on Applied Superconductivity 19, 336340 (2009).
11. M. Lohmeyer, Optical and Quantum Electronics 29, 907922 (1997).
12. D. Bucci, B. Martin, and A. Morand, Proceedings of SPIE 7597 (2010).
13. Paul Cavalier, Ph.D Thesis Grenoble University - Direct Sampling of Light Interferences with Superconducting Nanodetectors for the Realization of a SWIFTS Microspectrometer, May 2011.
14. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K.W. Yang, K. K. Berggren, G. N. Gol'tsman, and B. M. Voronov, Applied Physics Letters 88, 111116 (2006).
15. C. Constancias, R. Espiau de Lamaestre, O. Louveau, P. Cavalier, and J-C. Villégier, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 25, 2041 (2007).
16. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, Optics Express 16, 10750 (2008).
17. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, Optics Communications 210, 4349 (2002).
18. R. Espiau de Lamaestre, L. Maingault, L. Frey, C. Constancias, P. Cavalier, J-C. Villégier, P. Odier, and J-P. Poizat, Proceedings of SPIE 33, 72490Q72490Q (2009).
19. J-C. Villégier, S. Bouat, M. Aurino, C. Socquet-Clerc, and D. Renaud, IEEE Transactions on Applied Superconductivity 21, 102106 (2011).
20. P. Kern, E. Le Coarer, and P. Benech, Optics Express 17, 12 (2009).
21. A. Labeyrie, WO 96/37933, European Patent Office (1999).

Data & Media loading...


Article metrics loading...



A SWIFTS device (Stationary Wave Integrated Fourier Transform Spectrometer) has been realized with an array of 24 SuperconductingNanowire Single Photon Detectors (SNSPD), on-chip integrated under a Si3N4 monomode rib-waveguide interferometer. Colored light around 1.55μm wavelength is introduced through end-fire coupling, producing a counter-propagative stationary interferogram over the 40nm wide, 120nm spaced, 4nm thick epi-NbN nanowire array. Modulations in the source bandwidth have been detected using individual waveguide coupled SNSPDs operating in single photon counting mode, which is a step towards light spectrum reconstruction by inverse Fourier transform of the stationary wave intensity. We report the design, fabrication process and in-situ measurement at 4.2K of light power modulation in the interferometer, obtained with variable laser wavelength. Such micro-SWIFTS configuration with 160nm sampling period over 3.84μm distance allows a spectral bandwidth of 2μm and a wavelength resolution of 170nm. The light interferences direct sampling ability is unique and raises wide interest with several potential applications like fringe-tracking, metrology, cryptography or optical tomography.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd