1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3657509
1.
1. S. K. Singh, B. K. Jha, and A. K. Singh, “Natural convection in vertical concentric annuli under a radial magnetic field,” Heat and Mass Transfer 32, 399401 (1997).
http://dx.doi.org/10.1007/s002310050137
2.
2. O. D. Makinde, O. A. Bég, and H. S. Takhar, “Magnetohydrodynamic viscous flow in a porous medium cylindrical annulus with an applied radial magnetic field,” Int. J. Appl. Math. and Mech. 5, 6881 (2009).
3.
3. O. D. Makinde and T. Chinyoka, “Numerical study of unsteady hydromagnetic generalised Couette flow of a reactive third grade fluid with asymmetric convective cooling,” Computers and Math. with Appl. 61, 11671179 (2011).
http://dx.doi.org/10.1016/j.camwa.2010.12.066
4.
4. P. G. Saffman, “On the stability of laminar flow of a dusty gas,” J. Fluid Mech. 13, 120128 (1962).
http://dx.doi.org/10.1017/S0022112062000555
5.
5. S. K. Nag, R. N. Jana, and N. Datta, “Couettte flow of a dusty gas,” Acta Mech 33, 179187 (1979).
http://dx.doi.org/10.1007/BF01175914
6.
6. J. Singh and S. N. Dube, “Unsteady flow of a dusty fluid through a circular pipe,” Indian J. Pure Appl. Math. 6, 6979 (1973).
7.
7. A. J. Chamkha, “Effects of particulate diffusion on the compressible boundary layer flow of a two-phase suspension over a horizontal surface,” Trans. ASME, J. Fluids Engineering 1201, 146151 (1998).
http://dx.doi.org/10.1115/1.2819639
8.
8. O. D. Makinde and T. Chinyoka, “MHD transient flows and heat transfer of dusty fluid in a channel with variable physical properties and Navier slip condition,” Comp. Math. Appl. 60, 660669 (2010).
http://dx.doi.org/10.1016/j.camwa.2010.05.014
9.
9. H. A. Attia, “Unsteady MHD Couette flow and heat transfer of dusty fluid with variable physical properties,” Appl. Maths. Comp. 177, 308318 (2005).
http://dx.doi.org/10.1016/j.amc.2005.11.010
10.
10. B. J. Gireesha, C. S. Bagewadi, and B. C. P. Kumara, “Flow of unsteady dusty fluid under varying pulsatile pressure gradient in anholonomic co-ordinate system,” EJTP 14, 916 (2007).
11.
11. S. Rashmi, V. Kavitha, B. S. Roohi, Gurumurthy, B. J. Gireesha, and C. S. Bagewadi, “Unsteady flow of a dusty fluid between two oscillating plates under varying constant pressure gradient,” Novi Sad J. Math. 37, 2534 (2007).
12.
12. S. Ghosh and A. K. Ghosh, “On hydromagnetic rotating flow of a dusty fluid near a pulsating plate,” Comp. Appl. Math. 27, 130 (2008).
13.
13. H. A. Rahmatulin, “Osnovi gidrodinamiki vzaimopronikayu¸sih dvijeniy,” Prikladnaya Matematika i Makanika 20, 5665 (1956).
14.
14. F. Fayzullyev, “Computer, laminarnoye dvijeniye mnogofaznih sredb trboprovodah izd,” FAN, Taşkent (1966).
15.
15. K. S. Latipov, “O nekotorih zadaçah neustanovivşixsya teçeniy dvuh komponentnih sred,” Izv. AN UzSSR Ser. Teh. Nauk 4, 2129 (1963).
16.
16. D. A. Drew, “Mathematical modelling of two-phase flow,” Ann. Rev. Fluid Mech. 15, 261291 (1983).
http://dx.doi.org/10.1146/annurev.fl.15.010183.001401
17.
17. D. Gidaspow, “Hydrodynamics of fluidization and heat transfer: Super computing modelling,” Appl. Mech. Rev. 39, 123 (1986).
http://dx.doi.org/10.1115/1.3143702
18.
18. M. Gadiraju, J. Pedddieson, and S. Munukutla, “Exact solutions for two-phase vertical pipe flow,” Mech. Res. Commun. 19, 713 (1992).
http://dx.doi.org/10.1016/0093-6413(92)90003-S
19.
19. A. J. Chamkha and H. M. Ramadan, “Analytical solutions for free convection flow of a particulate suspension past an infinite vertical surface,” Int. J. Engng Sci. 36, 4960 (1998).
http://dx.doi.org/10.1016/S0020-7225(97)00058-X
20.
20. A. J. Chamkha, “Unsteady laminar hydromagnetic fluid-particle flow and heat transfer in channels and circular pipes,” International Journal of Heat and Fluid Flow 21, 740746 (2000).
http://dx.doi.org/10.1016/S0142-727X(00)00031-X
21.
21. Z. Recebli and H. Kurt, “Two-phase steady flow along a horizontal glass pipe in the presence of magnetic and electric fields,” International Journal of Heat and Fluid Flow 29, 263268 (2008).
http://dx.doi.org/10.1016/j.ijheatfluidflow.2007.09.003
22.
22. R. K. Gupta and S. C. Gupta, “Couette flow of a dusty gas between two infinite coaxial cylinders,” Indian J. Pure Appl. Math. 6, 5667 (1975).
23.
23. N. Datta and D. C. Dalai, “Pulsatile flow and heat transfer of a dusty fluid through an infinitely long annular pipe,” International Journal of Multiphase Fow. 21, 515528 (1995).
http://dx.doi.org/10.1016/0301-9322(94)00064-Q
24.
24. G. Sutton and A. Sherman, Engineering Magnetohydrodynamics (McGraw-Hill New York, 1965).
25.
25. B. K. Jha and C. A. Apere, “Unsteady MHD Couette flow in an annuli: The Riemann-sum approximaion approach,” J. Phys. Soc. Jpn. 79, 1244031 (2010).
http://dx.doi.org/10.1143/JPSJ.79.124403
26.
26. D. Y. Tzou, Macro to Microscale Heat Transfer: The Lagging Behaviour (Taylor and Francis, Washington, 1997).
27.
27. M. Avila, F. Marques, J. M. Lopez, and A. Meseguer, “Stability control and catastrophic transition in a forced Taylor-Couette system,” J. Fluid Mech. 590, 471496 (2007).
http://dx.doi.org/10.1017/S0022112007008105
28.
28. B. Fornberg, A Practical guide to pseudospectral methods (Cambridge University Press, 1998).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3657509
Loading
/content/aip/journal/adva/1/4/10.1063/1.3657509
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3657509
2011-10-20
2014-10-31

Abstract

The problem of two-phase unsteady MHDflow between two concentric cylinders of infinite length has been analysed when the outer cylinder is impulsively started. The system of partial differential equations describing the flow problem is formulated taking the viscosity of the particle phase into consideration. Unified closed form expressions are obtained for the velocities and the skin frictions for both cases of the applied magnetic field being fixed to either the fluid or the moving outer cylinder. The problem is solved using a combination of the Laplace transform technique, D’Alemberts and the Riemann-sum approximation methods. The solution obtained is validated by comparisons with the closed form solutions obtained for the steady states which has been derived separately. The governing equations are also solved using the implicit finite difference method to verify the present proposed method. The variation of the velocity and the skin friction with the dimensionless parameters occuring in the problem are illustrated graphically and discussed for both phases.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3657509.html;jsessionid=1t9efep3403sk.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3657509&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Unsteady MHD two-phase Couette flow of fluid-particle suspension in an annulus
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3657509
10.1063/1.3657509
SEARCH_EXPAND_ITEM