Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. O. K. Varghese, M. Paulose, T. J. LaTempa, G. A. Grimes, “High-rate solar photocatalytic conversion of CO2 and water vapor to Hydrocarbon fuels”, Nano Letters 9, 731737 (2009).
2. S. S. Tan, L. Zou, E. Hu, “Photosynthesis of hydrogen and methane as key components for clean energy system”, Science and Technology of Advanced Materials 8, 8992 (2007).
3. K. Adachi, K. Ohta, T. Mizuno, “Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide”, Solar Energy 53, 187190 (1994).
4. T. Inoue, A. Fujishima, S. Konishi, K. Honda, “Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders”, Nature 277, 637638 (1979).
5. K. Miyamoto, “Renewable biological systems for alternative sustainable energy production”, Food and Agriculture Organization of the United Nations (FAO) Agricultural Services Bulletin - 128, ISBN 92-5-104059-1, (FAO 1997). Available at:
6. C. Wang, M. Shen, H. Huo, H. Ren, F. Yan, M. Johnson, “Nature-like photosynthesis of water and carbon dioxide with femtosecond laser induced self-assembled metal nanostructures”, International Journal of Modern Physics B 23, 58495857 (2009).
7. M. Shen, “Nanostructuring solid surfaces with femtosecond laser irradations for applications”, Modern Physics Letter B 24, 257269 (2010).
8. N. S. McIntyre, M. G. Cook, “X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper”, Analytical Chemistry. 47, 22082213 (1975).
9. M. Oku, K. Hirokawa, “X-ray photoelectron spectroscopy of Co3O4, Fe3O4, Mn3O4, and related compoundsJournal of Electron Spectroscopy and Related Phenomena 8, 475481 (1976).
10. M. G. Ramsey, G. J. Russell, “Photoemission satellites “on” and “off” resonance in transition metals and their oxidesApplied Surface Science 22-23 206214 (1985).
11. Z. X. Shen, J. W. Allen, P. A. P. Lindberg, D. S. Dessau, O. B. Wells, A. Borg, W. Ellis, J. S. Kang, S. J. Oh, I. Lindau, W. E. SpicerPhotoemission study of CoOPhysical Review. B 42, 18171828 (1990).
12. G. Tyuliev, S. Angelov, “The nature of excess oxygen in Co3O4+ɛApplied Surface Science 32, 381391 (1988).
13. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, “Composition and Microstructure of Cobalt Oxide Thin Films Obtained from a Novel Cobalt(II) Precursor by Chemical Vapor Deposition”, Chemistry of Materials 13, 588593 (2001).
14. H. Huo, C. Wang, H. Ren, M. Johnson, M. Y. Shen, “Surface enhanced Raman scattering sensing with nanostructures fabricated by soft nanolithography”, Journal of Macromolecular Science A: Pure and Applied Chemistry 46, 11821184 (2009).
15. K. Ogura, H. Yano, F. Shirai, “Catalytic reduction of CO2 to ethylene by electrolysis at a three-phase interface”, Journal of The Electrochemical Society 150, D163D168 (2003).
16. K. Ogura, R. Oohara, Y. Kudo, “Reduction of CO2 to ethylene at three-phase interface effects of electrode substrate and catalytic coating”, Journal of The Electrochemical Society 152, D213D219 (2005).
17. J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications”, Faraday Discussions 132, 926 (2006).
18. B. J. Kennedy, S. Spaeth, M. Dickey, K. T. Carron, “Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using alkanethiols”, Journal of Physical Chemistry B 103, 36403646 (1999).
19. K. I. Mullen, D. Wang, L. G. Crane, K. T. Carron, “Trace detection of ionic species with surface enhanced Raman spectroscopy”, Spectroscopy 7, 2432 (1992).
20. E. Hao, G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimmers”, Journal of Chemical Physics 120, 357366 (2004).
21. The nanostrucured Co microparicles we used look very black because of the multiple reflection effects, the plasma resonant optical absorption of the Co nanostructures could not precisely measured. The plasma resonant wavelength is at about 500 nm for the Co nanoparticles, please see the paper: J. Zhang, C. Q. Lan, “Nickel and cobalt nanoparticles produced by laser ablation of solids in organic solution”, Materials Letters 62, 15211524 (2008).
22. J. van Elp, J. L. Wieland, H. Eskes, P. Kuiper, and G. A. Sawatzky, “Electronic structure of CoO, Li-doped CoO, and LiCoO2”, Phys. Rev. B 44, 60906103 (1991).
23. Jean-Marie Lehn and Raymond Ziessel, “Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation”, Proc. Nati. Acad. Sci. USA. 79, 701704, (1982).
24. W. Thiemsorn, K. Keowkamnerd, P Suwannathada, H. Hessenkemper and S. Phanichaphant, “Redox ratio and optical absorption of polyvalent ions in industrial glasses”, Bull. Mater. Sci. 30, 487495 (2007).
25. H. Schulz, “Short history and present trends of Fischer–Tropsch synthesis”, Applied Catalysis A: General 186, 312 (1999). Also see the Fischer–Tropsch Archive,
26. W. Krasser, A. J. Renouprez, “Enhanced Raman spectra of coadsorbed carbon monoxide and hydrogen on small nickel particles”, Journal of Raman Spectroscopy 11, 425429 (1981).

Data & Media loading...


Article metrics loading...



Based on experimental results, we propose a mechanism that allows the use of metal nanostructures to synthesize hydrocarbons and carbohydrates from carbon dioxide, water and sunlight. When sunlight impinges on cobaltnanostructures in a glass chamber, its intensity is greatly enhanced around the tips of the nanostructures through surface plasmonexcitations focusing effect, and it then photodissociates the water and carbon dioxide molecules through enhanced photon absorptions of ions around the tips of the nanostructures. The photodissociated molecules in excited states remain on the cobaltnanostructuresurfaces and various hydrocarbons and carbohydrates then will be formed around the surfaces at temperatures much lower than 100 oC.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd