1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A carbon nanotube immunosensor for Salmonella
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3658573
1.
1. J. Buzby, J. MacDonald, S. Crutchfield and T. Roberts, American Journal of Agricultural Economics 78 (5), 13911391 (1996).
2.
2. C. Tirado and K. Schmidt, J Infection 43 (1), 8084 (2001).
3.
3. J. H. Meng, S. H. Zhao, M. P. Doyle, S. E. Mitchell and S. Kresovich, International Journal of Food Microbiology 32 (1-2), 103113 (1996).
http://dx.doi.org/10.1016/0168-1605(96)01110-5
4.
4. N. S. Hobson, I. Tothill and A. P. F. Turner, Biosens Bioelectron 11 (5), 455477 (1996).
http://dx.doi.org/10.1016/0956-5663(96)86783-2
5.
5. T. S. Huang, Y. Tzeng, Y. K. Liu, Y. K. Chen, K. R. Walker, R. Guntupalli and C. Liu, Diam Relat Mater 13 (4-8), 10981102 (2004).
http://dx.doi.org/10.1016/j.diamond.2003.11.047
6.
6. M. S. Mannoor, S. Y. Zhang, A. J. Link and M. C. McAlpine, Proceedings of the National Academy of Sciences of the United States of America 107 (45), 1920719212 (2010).
http://dx.doi.org/10.1073/pnas.1008768107
7.
7. R. A. Villamizar, A. Maroto, F. X. Rius, I. Inza and M. J. Figueras, Biosens. Bioelectron. 24 (2), 279283 (2008).
http://dx.doi.org/10.1016/j.bios.2008.03.046
8.
8. G. A. Zelada-Guillen, J. Riu, A. Duzgun and F. X. Rius, Angew Chem Int Edit 48 (40), 73347337 (2009).
http://dx.doi.org/10.1002/anie.200902090
9.
9. T. Seiyama, A. Kato, K. Fujiishi and M. Nagatani, Anal Chem 34 (11), (1962).
http://dx.doi.org/10.1021/ac60191a001
10.
10. P. G. Collins, K. Bradley, M. Ishigami and A. Zettl, Science 287 (5459), 18011804 (2000).
http://dx.doi.org/10.1126/science.287.5459.1801
11.
11. C. Staii, M. Chen, A. Gelperin and A. T. Johnson, Nano Lett 5 (9), 17741778 (2005).
http://dx.doi.org/10.1021/nl051261f
12.
12. S. M. Khamis, R. R. Johnson, Z. T. Luo and A. T. C. Johnson, J Phys Chem Solids 71 (4), 476479 (2010).
http://dx.doi.org/10.1016/j.jpcs.2009.12.015
13.
13. J. Suehiro, N. Ikeda, A. Ohtsubo and K. Imasaka, Iet Nanobiotechnol 3 (2), 1522 (2009).
http://dx.doi.org/10.1049/iet-nbt.2008.0011
14.
14. A. Star, J. C. P. Gabriel, K. Bradley and G. Gruner, Nano Lett 3 (4), 459463 (2003).
http://dx.doi.org/10.1021/nl0340172
15.
15. K. Bradley, A. Davis, J. C. P. Gabriel and G. Gruner, Nano Lett 5 (5), 841845 (2005).
http://dx.doi.org/10.1021/nl050157v
16.
16. H. M. So, D. W. Park, E. K. Jeon, Y. H. Kim, B. S. Kim, C. K. Lee, S. Y. Choi, S. C. Kim, H. Chang and J. O. Lee, Small 4 (2), 197201 (2008).
http://dx.doi.org/10.1002/smll.200700664
17.
17. Z. F. Kuang, S. N. Kim, W. J. Crookes-Goodson, B. L. Farmer and R. R. Naik, Acs Nano 4 (1), 452458 (2010).
http://dx.doi.org/10.1021/nn901365g
18.
18. Y. B. Zhang, M. Kanungo, A. J. Ho, P. Freimuth, D. van der Lelie, M. Chen, S. M. Khamis, S. S. Datta, A. T. C. Johnson, J. A. Misewich and S. S. Wong, Nano Lett 7 (10), 30863091 (2007).
http://dx.doi.org/10.1021/nl071572l
19.
19. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. M. Li, W. Kim, P. J. Utz and H. J. Dai, Proceedings of the National Academy of Sciences of the United States of America 100 (9), 49844989 (2003).
http://dx.doi.org/10.1073/pnas.0837064100
20.
20. L. An, J. M. Owens, L. E. McNeil and J. Liu, J Am Chem Soc 124 (46), 1368813689 (2002).
http://dx.doi.org/10.1021/ja0274958
21.
21. S. M. Khamis, R. A. Jones and A. T. C. Johnson, AIP Advances 1, 022106 (2011).
http://dx.doi.org/10.1063/1.3582820
22.
22. K. G. Lee, S. R. Pillai, S. R. Singh and G. A. Willing, Biotechnology and Bioengineering 99 (4), 949959 (2008).
http://dx.doi.org/10.1002/bit.21644
23.
23. J. V. Staros, R. W. Wright and D. M. Swingle, Analytical Biochemistry 156 (1), 220222 (1986).
http://dx.doi.org/10.1016/0003-2697(86)90176-4
24.
24. H. Park, J. J. Zhao and J. P. Lu, Nanotechnology 16 (6), 635638 (2005).
http://dx.doi.org/10.1088/0957-4484/16/6/003
25.
25. T. Durkop, S. A. Getty, E. Cobas and M. S. Fuhrer, Nano Lett 4 (1), 3539 (2003).
http://dx.doi.org/10.1021/nl034841q
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3658573
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Anti-Salmonella antibody attachment to CNTs. (a) Atomic Force Microscope (AFM) image of antibodies and CNTs taken in tapping mode (Digital Instruments Dimension 3000). Carbon nanotubes are clearly visible at 1-2 nm higher than the background. The tallest features are anti-Salmonella antibodies, roughly 5 nm in height. (b) A diagram of the resulting devices, where a pre-fabricated single nanotube transistor has been functionalized with anti-Salmonella antibodies.

Image of FIG. 2.

Click to view

FIG. 2.

I-Vg curves demonstrating Salmonella sensitivity. I-Vg curve of a typical un-functionalized CNTFET (red), after wet-air oxidation (black), after EDAC/sNHS treatment (blue), after anti-Salmonella antibody treatment (green) and after exposure to 107 cfu/mL Salmonella bacteria.

Image of FIG. 3.

Click to view

FIG. 3.

Response of CNTFET sensors to varying concentrations of Salmonella. Exposure to higher concentration of Salmonella is correlated with a larger reduction in carrier mobility.

Tables

Generic image for table

Click to view

Table I.

Changes in electrical properties of functionalized CNTFETs when exposed to 108 cfu/ml of various bacteria.

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3658573
2011-10-26
2014-04-19

Abstract

Antibody-functionalized carbon nanotubedevices have been suggested for use as bacterial detectors for monitoring of food purity in transit from the farm to the kitchen. Here we report progress towards that goal by demonstrating specific detection of Salmonella in complex nutrient broth solutions using nanotubetransistors functionalized with covalently-bound anti-Salmonella antibodies. The small size of the active device region makes them compatible with integration in large-scale arrays. We find that the on-state current of the transistor is sensitive specifically to the Salmonella concentration and saturates at low concentration (<1000 cfu/ml). In contrast, the carrier mobility is affected comparably by Salmonella and other bacteria types, with no sign of saturation even at much larger concentrations (108 cfu/ml).

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3658573.html;jsessionid=2009pp7a7rbiv.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3658573&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A carbon nanotube immunosensor for Salmonella
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3658573
10.1063/1.3658573
SEARCH_EXPAND_ITEM