Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3660322
1.
1. Y. Tokura, Science 312, 1481 (2006).
http://dx.doi.org/10.1126/science.1125227
2.
2. W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
http://dx.doi.org/10.1038/nature05023
3.
3. S-W. Cheong and M. Mostovoy, Nature Mater. 6, 13 (2007).
http://dx.doi.org/10.1038/nmat1804
4.
4. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature, 426, 55 (2003).
http://dx.doi.org/10.1038/nature02018
5.
5. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, Science 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
6.
6. Y. Tokura and S. Seki, Adv. Mater. 22, 1554 (2010).
7.
7. H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.057205
8.
8. I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.094434
9.
9. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.257201
10.
10. T. Arima, T. Goto, Y. Yamasaki, S. Miyasaka, K. Ishii, M. Tsubota, T. Inami, Y. Murakami, and Y. Tokura, Phys. Rev. B 72, 100102R (2005).
http://dx.doi.org/10.1103/PhysRevB.72.100102
11.
11. Y. Yamasaki, H. Sagayama, T. Goto, M. Matsuura, K. Hirota, T. Arima, and Y. Tokura, Phys. Rev. Lett. 98, 147204 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.147204
12.
12. Y. Yamasaki, H. Sagayama, N. Abe, T. Arima, K. Sasai, M. Matsuura, K. Hirota, D. Okuyama, Y. Noda, and Y. Tokura, Phys. Rev. Lett. 101, 097204 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.097204
13.
13. S. M. Guo, Y. G. Zhao, C. M. Xiong, and P. L. Lang, Appl. Phys. Lett. 89, 223506 (2006).
http://dx.doi.org/10.1063/1.2393148
14.
14. Z. Luo, J. Gao, A. B. Djurisic, C. T. Yip, and G. B. Zhang, Appl. Phys. Lett. 92, 182501 (2008).
http://dx.doi.org/10.1063/1.2920765
15.
15. J. Matsuno, A. Sawa, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 92, 122104 (2008).
http://dx.doi.org/10.1063/1.2898896
16.
16. W. Ramadan, S. B. Ogale, S. Dhar, L. F. Fu, S. R. Shinde, D. C. Kundaliya, M. S. R Rao, N. D. Browning, and T. Venkatesan, Phys. Rev. B 72, 205333 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.205333
17.
17. S. Das, J. H. Kim, Y. K. Park, and Y. B. Hahn, Appl. Phys. Lett. 98, 202102 (2011).
http://dx.doi.org/10.1063/1.3592736
18.
18. H. Tanaka, J. Zhang, and T. Kawai, Phys. Rev. Lett. 88, 027204 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.027204
19.
19. A. Tiwari, C. Jin, D. Kumar, and J. Narayan, Appl. Phys. Lett. 83, 1773 (2003).
http://dx.doi.org/10.1063/1.1605801
20.
20. A. Yamamoto, A. Sawa, H. Akoh, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 90, 112104 (2007).
http://dx.doi.org/10.1063/1.2712803
21.
21. J. R. Sun, S. Y. Zhang, B. G. Shen, and H. K. Wong, Appl. Phys. Lett. 86, 053503 (2005).
http://dx.doi.org/10.1063/1.1861112
22.
22. H. Yang, H. M. Luo, H. Wang, I. O. Usov, N. A. Suvorova, M. Jain, D. M. Feldmann, P. C. Dowden, R. F. DePaula, and Q. X. Jia, Appl. Phys. Lett. 92, 102113 (2008).
http://dx.doi.org/10.1063/1.2896302
23.
23. Z. G. Sheng, B. C. Zhao, W. H. Song, Y. P. Sun, J. R. Sun, and B. G. Shen, Appl. Phys. Lett. 87, 242501 (2005).
http://dx.doi.org/10.1063/1.2140878
24.
24. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
25.
25. J. Bardeen, Phys. Rev. 71, 717 (1947).
http://dx.doi.org/10.1103/PhysRev.71.717
26.
26. V. Heine, Phys. Rev. 138, A1689 (1965).
http://dx.doi.org/10.1103/PhysRev.138.A1689
27.
27. J. M. Andrews and J. C. Phillips, Phys. Rev. Lett. 35, 56 (1975).
http://dx.doi.org/10.1103/PhysRevLett.35.56
28.
28. A. Ohtomo, D. A. Muller, J. L. Grazul, and H. Y. Hwang, Nature (London) 419, 378 (2002).
http://dx.doi.org/10.1038/nature00977
29.
29. Y. Kozuka, M. Kim, C. Bell, B. G. Kim, Y. Hikita, and H. Y. Hwang, Nature (London) 462, 487 (2009).
http://dx.doi.org/10.1038/nature08566
30.
30. S. Okamoto and A. J. Millis, Nature (London) 428, 630 (2004).
http://dx.doi.org/10.1038/nature02450
31.
31. J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
32.
32. A. Gozar, G. Logvenov, L. Fitting Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, Nature 455, 782 (2008).
http://dx.doi.org/10.1038/nature07293
33.
33. J. Chakhalian, J. W. Freeland, G. Srajer, J. Strempfer, G. Khaliullin, J. C. Cezar, T. Charlton, R. Dalgliesh, C. Bernhard, G. Cristiani, H. U. Habermeier, and B. Keimer, Nature Phys. 2, 244 (2006).
http://dx.doi.org/10.1038/nphys272
34.
34. J. Chakhalian, J. W. Freeland, H. U. Habermeier, G. Cristiani, G. Khaliullin, M. V. Veenendaal, and B. Keimer, Science 318, 1114 (2007).
http://dx.doi.org/10.1126/science.1149338
35.
35. A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, Appl. Phys. Lett. 86, 112508 (2005).
http://dx.doi.org/10.1063/1.1883336
36.
36. Y. Hikita, M. Nishikawa, T. Yajima, and H. Y. Hwang, Phys. Rev. B 79, 073101 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.073101
37.
37. M. Nakamura, A. Sawa, J. Fujioka, M. Kawasaki, and Y. Tokura, Phys. Rev. B 82, 201101R (2010).
http://dx.doi.org/10.1103/PhysRevB.82.201101
38.
38. T. Y. Chien, J. Liu, J. Chakhalian, N. P. Guisinger, and J. W. Freeland, Phys. Rev. B 82, 041101 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.041101
39.
39. C. J. M. Daumont, D. Mannix, S. Venkatesan, G. Catalan, D. Rubi, B. J. Kooi, J. T. M. D. Hosson, and B. Noheda, J. Phys.: Condens. Matter. 21, 182001 (2009).
http://dx.doi.org/10.1088/0953-8984/21/18/182001
40.
40. D. Rubi, C. D. Graaf, C. J. M. Daumont, D. Mannix, R. Broer, and B. Noheda, Phys. Rev. B 79, 014416 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.014416
41.
41. S. Venkatesan, C. Daumont, B. J. Kooi, B. Noheda, and J. T. M. D. Hosson, Phys. Rev. B 80, 214111 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.214111
42.
42. A. H. Wilson, Proc. R. Soc. (London) A 136, 487 (1932).
http://dx.doi.org/10.1098/rspa.1932.0097
43.
43. M. Dawber, K. M. Rabe, and J. F. Scott, Rev. Mod. Phys. 77, 1083 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.1083
44.
44. A. J. Dekker, Solid State Physics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1957).
45.
45. J. G. Simmons, Phys. Rev. Lett. 15, 967 (1965).
http://dx.doi.org/10.1103/PhysRevLett.15.967
46.
46. J. F. Scott, Ferroelectric Memories, Springer-Verlag, Berlin, 2000.
47.
47. A. Sawa, A. Yamamoto, H. Yamada, T. Fujii, M. Kawasaki, J. Matsuno, and Y. Tokura, Appl. Phys. Lett. 90, 252102 (2007).
http://dx.doi.org/10.1063/1.2749431
48.
48. A. Malashevich and D. Vanderbilt, Phys. Rev. Lett. 101, 037210 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.037210
49.
49. T. Shimizu and H. Okushi, J. Appl. Phys. 85, 7244 (1999).
http://dx.doi.org/10.1063/1.370539
50.
50. M. A. Lampert, Phys. Rev. 103, 1648 (1956).
http://dx.doi.org/10.1103/PhysRev.103.1648
51.
51. M. A. Lampert and P. Mark, Current Injection in Solids, (Academic, New York, 1970).
52.
52. K. C. Kao and W. Huang, Electrical Transport in Solids, (Pergamon, Oxford, 1981).
53.
53. M. A. Lampert, Rep. Prog. Phys. 27, 329 (1964).
http://dx.doi.org/10.1088/0034-4885/27/1/307
54.
54. J. G. Simmons, J. Phys. D 4, 613 (1971).
http://dx.doi.org/10.1088/0022-3727/4/5/202
55.
55. F. C. Ark and T. J. Lewis, J. Phys. D: Appl. Phys. 6, 1067 (1973).
http://dx.doi.org/10.1088/0022-3727/6/9/311
56.
56. C. C. Wang, Y. M. Cui, and L. W. Zhang, Appl. Phys. Lett. 90, 012904 (2007).
http://dx.doi.org/10.1063/1.2430634
57.
57. L. Néel, Ann. Géophys. 5, 99 (1949).
58.
58. M. Dawber, J. F. Scott, and A. J. Hartmann, J. Eur. Ceram. Soc. 21, 1633 (2001).
http://dx.doi.org/10.1016/S0955-2219(01)00081-4
59.
59. J. H. Chen, C. L. Lia, K. Urban, and C. L. Chen, Appl. Phys. Lett. 81, 1291 (2002).
http://dx.doi.org/10.1063/1.1500413
60.
60. I. MacLaren, Z. L. Wang, H. S. Wang, and Q. Li, Appl. Phys. Lett. 80, 1406 (2002).
http://dx.doi.org/10.1063/1.1453482
61.
61. W. R. Brant, S. Schmid, Q. Gu, R. L. Withers, J. Hester, and M. Avdeev, J. Solid State Chem. 183, 1998 (2010).
http://dx.doi.org/10.1016/j.jssc.2010.06.002
62.
62. D. Meier, N. Aliouane, D. N. Argyriou, J. A. Mydosh, and T. Lorenz, New J. Phys. 9, 100 (2007).
http://dx.doi.org/10.1088/1367-2630/9/4/100
63.
63. K. Berggold, J. Baier, D. Meier, J. A. Mydosh, T. Lorenz, J. Hemberger, A. Balbashov, N. Aliouane, and D. N. Argyriou, Phys. Rev. B 76, 094418 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.094418
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3660322
Loading
/content/aip/journal/adva/1/4/10.1063/1.3660322
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3660322
2011-11-02
2016-09-26

Abstract

We report the fabrication and characterizations of oxide heterojunctions composed of TbMnO3thin filmsgrown on conducting Nb:SrTiO3 substrates. The heterojunctions exhibit rich rectifying characteristics, depending on not only the measurement temperature but also the growth temperature: at 300 K, good rectification appears in both samples; at lower temperatures, the rectification is much smaller in the sample grown at 700 °C, whereas it exhibits a reversed bias dependence and reaches ∼5000 in the sample grown at 780 °C. Regarding to the transport mechanism, the conduction appears to be Schottky-emission-like at high temperatures in both junctions, indicating well-defined band alignment at interface; on the other hand, the space-charge-limited mechanism dictates the low temperature transport. Furthermore, the temperature and frequency dependent capacitance-loss data suggest that the transport dynamics is associated with multiple thermally activated relaxation processes. Finally, transmission electron microscopy studies shed light on the crystalline quality of the junctioninterfaces, which is believed to dictate the corresponding transport properties.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3660322.html;jsessionid=58_ZwlCyPn5xpf55i_q37ld8.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3660322&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3660322&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3660322'
Right1,Right2,Right3,