Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3660325
1.
1. K. Novoselov, “Graphene: Mind the gap”. Nat. Mater. 6, 720721 (2007).
http://dx.doi.org/10.1038/nmat2006
2.
2. V. W. Brar, S. Wickenburg, M. Panlasigui, C. H. Park, T. O. Wehling, Y. Zhang, R. Decker, Ç. Girit, A. V. Balatsky, S. G. Louie, A. Zettl, and M. F. Crommie, “Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy”. Phys. Rev. Lett. 104, 036805 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.036805
3.
3. R. A. Nistor, D. M. Newns, and G. J. Martyna, “The Role of Chemistry in Graphene Doping for Carbon-Based Electronics”. ACS Nano 5, 30963103 (2011).
http://dx.doi.org/10.1021/nn200225f
4.
4. B. Huang, H. J. Xiang, and S.-H. Wei, “Controlling doping in graphene through a SiC substrate: A first-principles study”. Phys. Rev. B 83, 161405 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.161405
5.
5. E. Beheshti, A. Nojeh, and P. Servati, “A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage”. Carbon 49, 15611567 (2011).
http://dx.doi.org/10.1016/j.carbon.2010.12.023
6.
6. Y. Gao and Z. Yuan, “Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study”. Solid State Commun. 151, 10091013 (2011).
http://dx.doi.org/10.1016/j.ssc.2011.05.001
7.
7. H. Gao, L. Wang, J. Zhao, F. Ding, and J. Lu, “Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence”. J. Phys. Chem. C 115, 32363242 (2011).
http://dx.doi.org/10.1021/jp1094454
8.
8. A. Ambrosetti and P. L. Silvestrelli, “Adsorption of Rare-Gas Atoms and Water on Graphite and Graphene by van der Waals-Corrected Density Functional Theory”. J. Phys. Chem. C 115, 36953702 (2011).
http://dx.doi.org/10.1021/jp110669p
9.
9. F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P. M. Ajayan, and N. Koratkar, “Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules”. Small 6, 25352538 (2010).
http://dx.doi.org/10.1002/smll.201001384
10.
10. M. E. Suk and N. R. Aluru, “Water Transport through Ultrathin Graphene”. J. Phys. Chem. Lett. 1, 15901594 (2010).
http://dx.doi.org/10.1021/jz100240r
11.
11. A. P. Seitsonen, A. M. Saitta, T. Wassmann, M. Lazzeri, and F. Mauri, “Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia”. Phys. Rev. B 82, 115425 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.115425
12.
12. J. H. Park and N. R. Aluru, “Ordering-Induced Fast Diffusion of Nanoscale Water Film on Graphene”. J. Phys. Chem. C 114, 25952599 (2010).
http://dx.doi.org/10.1021/jp907512z
13.
13. M. C. Gordillo and J. Martí, “Effect of Surface Roughness on the Static and Dynamic Properties of Water Adsorbed on Graphene”. J. Phys. Chem. B 114, 45834589 (2010).
http://dx.doi.org/10.1021/jp9114332
14.
14. M. C. Gordillo and J. Martí, “Water on graphene surfaces”. J. Phys.: Condens. Matter 22, 284111 (2010).
http://dx.doi.org/10.1088/0953-8984/22/28/284111
15.
15. G. A. Kimmel, J. Matthiesen, M. Baer, C. J. Mundy, N. G. Petrik, R. S. Smith, Z. Dohnálek, and B. D. Kay, “No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene”. J. Am. Chem. Soc. 131, 1283812844 (2009).
http://dx.doi.org/10.1021/ja904708f
16.
16. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field in atomically thin carbon films”. Science 306, 666669 (2004).
http://dx.doi.org/10.1126/science.1102896
17.
17. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”. Nat. Mater. 6, 652655 (2007).
http://dx.doi.org/10.1038/nmat1967
18.
18. D. Marchenko, A. Varykhalov, A. Rybkin, A. M. Shikin, and O. Rader, “Atmospheric stability and doping protection of noble-metal intercalated graphene on Ni(111)”. Appl. Phys. Lett. 98, 122111 (2011).
http://dx.doi.org/10.1063/1.3565248
19.
19. J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal'ko, “Adsorbate-Limited Conductivity of Graphene”. Phys. Rev. Lett. 101, 196803 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.196803
20.
20. T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, “First-principles studies of water adsorption on graphene: The role of the substrate”. Appl. Phys. Lett. 93, 202110 (2008).
http://dx.doi.org/10.1063/1.3033202
21.
21. S. Meng and S. Gao, “Formation and interaction of hydrated alkali metal ions at the graphite-water interface”. J. Chem. Phys. 125, 014708 (2006).
http://dx.doi.org/10.1063/1.2206591
22.
22. S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. Gao, “Consistent picture for the wetting structure of water/Ru(0001)”. Chem. Phys. Lett. 402, 384388 (2005).
http://dx.doi.org/10.1016/j.cplett.2004.12.065
23.
23. S. Meng, E. G. Wang, and S. Gao, “Water adsorption on metal surfaces: A general picture from density functional theory studies”. Phys. Rev. B 69, 195404 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.195404
24.
24. S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational Recognition of Hydrogen-Bonded Water Networks on a Metal Surface”. Phys. Rev. Lett. 89, 176104 (2002).
http://dx.doi.org/10.1103/PhysRevLett.89.176104
25.
25. Y. Yang, S. Meng, and E. G. Wang, “Water adsorption on a NaCl (001) surface: A density functional theory study”. Phys. Rev. B 74, 245409 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.245409
26.
26. Y. Yu, Q. Guo, S. Liu, E. G. Wang, and P. J. Møller, “Partial dissociation of water on a MgO(100) film”. Phys. Rev. B 68, 115414 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.115414
27.
27. A. Politano, R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, “Purely quadratic dispersion of surface plasmon in Ag/Ni(111): the influence of electron confinement”. Phys. Status Solidi Rapid Res. Lett. (RRL) 2, 8688 (2008).
http://dx.doi.org/10.1002/pssr.200701307
28.
28. A. Politano, V. Formoso, and G. Chiarello, “Alkali adsorption on Ni(111) and their coadsorption with CO and O”. Appl. Surf. Sci. 254, 68546859 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.04.080
29.
29. H. Zhang, Q. Fu, Y. Cui, D. Tan, and X. Bao, “Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface”. J. Phys. Chem. C 113, 82968301 (2009).
http://dx.doi.org/10.1021/jp810514u
30.
30. P. Sutter, J. T. Sadowski, and E. Sutter, “Graphene on Pt(111): Growth and substrate interaction”. Phys. Rev. B 80, 245411 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.245411
31.
31. T. Fujita, W. Kobayashi, and C. Oshima, “Novel structures of carbon layers on a Pt(111) surface”. Surf. Interface Anal. 37, 120123 (2005).
http://dx.doi.org/10.1002/sia.1945
32.
32. M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du, and H. J. Gao, “Epitaxial growth and structural property of graphene on Pt(111)”. Appl. Phys. Lett. 98, 033101 (2011).
http://dx.doi.org/10.1063/1.3543624
33.
33. B. J. Kang, J. H. Mun, C. Y. Hwang, and B. J. Cho, “Monolayer graphene growth on sputtered thin film platinum”. J. Appl. Phys. 106, 104309 (2009).
http://dx.doi.org/10.1063/1.3254193
34.
34. G. Otero, C. Gonzalez, A. L. Pinardi, P. Merino, S. Gardonio, S. Lizzit, M. Blanco-Rey, K. Van de Ruit, C. F. J. Flipse, J. Méndez, P. L. de Andrés, and J. A. Martín-Gago, “Ordered Vacancy Network Induced by the Growth of Epitaxial Graphene on Pt(111)”. Phys. Rev. Lett. 105, 216102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.216102
35.
35. A. Politano, A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, “Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)”. Phys. Rev. B 84, 033401 (2011).
http://dx.doi.org/10.1103/PhysRevB.84.033401
36.
36. N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren, N. Mårtensson, and A. B. Preobrajenski, “Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111)”. J. Phys. Chem. C 115, 95689577 (2011).
http://dx.doi.org/10.1021/jp111962k
37.
37. Y. Yamada, C. Sugawara, Y. Satake, Y. Yokoyama, R. Okada, T. Nakayama, M. Sasaki, T. Kondo, J. Oh, J. Nakamura, and W. W. Hayes, “He/Ar-atom scattering from molecular monolayers: C60/Pt(111) and graphene/Pt(111)”. J. Phys.: Condens. Matter 22, 304010 (2010).
http://dx.doi.org/10.1088/0953-8984/22/30/304010
38.
38. A. Politano, A. R. Marino, V. Formoso, and G. Chiarello, “Evidence of Kohn anomalies in quasi-freestanding graphene on Pt(111)”. Carbon doi:10.1016/j.carbon.2011.1009.1028 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.1009.1028
39.
39. L. J. Karssemeijer and A. Fasolino, “Phonons of graphene and graphitic materials derived from the empirical potential LCBOPII”. Surf. Sci. 605, 16111615 (2011).
http://dx.doi.org/10.1016/j.susc.2010.10.036
40.
40. H. Yanagisawa, T. Tanaka, Y. Ishida, M. Matsue, E. Rokuta, S. Otani, and C. Oshima, “Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation”. Surf. Interface Anal. 37, 133136 (2005).
http://dx.doi.org/10.1002/sia.1948
41.
41. A. Politano, A. R. Marino, V. Formoso, and G. Chiarello, “Hydrogen bonding at the water/quasi-freestanding graphene interface”. Carbon 49, 51805184 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.07.034
42.
42. A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, “Controlling graphene corrugation on lattice-mismatched substrates”. Phys. Rev. B 78, 073401 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.073401
43.
43. J. Wintterlin and M. L. Bocquet, “Graphene on metal surfaces”. Surf. Sci. 603, 18411852 (2009).
http://dx.doi.org/10.1016/j.susc.2008.08.037
44.
44. B. D. Thoms and J. E. Butler, “HREELS scattering mechanism from diamond surfaces”. Phys. Rev. B 50, 1745017455 (1994).
http://dx.doi.org/10.1103/PhysRevB.50.17450
45.
45. A. Horn, J. Biener, A. Schenk, C. Lutterloh, and J. Küppers, “H/D exchange reaction at graphitic CH groups by thermal H(D) atoms”. Surf. Sci. 331-333, 178182 (1995).
http://dx.doi.org/10.1016/0039-6028(95)00188-3
46.
46. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, “Elastic properties of hydrogenated graphene”. Phys. Rev. B 82, 235414 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.235414
47.
47. A. Politano, V. Formoso, and G. Chiarello, “Chemical Reactions at Clean and Alkali-Doped Mismatched Metal/Metal Interfaces”. J. Phys. Chem. C 113, 316320 (2009).
http://dx.doi.org/10.1021/jp806832a
48.
48. A. Politano and G. Chiarello, “Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement”. Chem. Phys. Lett. 494, 8487 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.05.089
49.
49. G. Lee and E. W. Plummer, “High-resolution electron energy loss spectroscopy study on chemisorption of hydrogen on Cu(111)”. Surf. Sci. 498, 229236 (2002).
http://dx.doi.org/10.1016/S0039-6028(01)01765-4
50.
50. J. D. Jones, K. K. Mahajan, W. H. Williams, P. A. Ecton, Y. Mo, and J. M. Perez, “Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene”. Carbon 48, 23352340 (2010).
http://dx.doi.org/10.1016/j.carbon.2010.03.010
51.
51. K. F. McCarty, P. J. Feibelman, E. Loginova, and N. C. Bartelt, “Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001)”. Carbon 47, 18061813 (2009).
http://dx.doi.org/10.1016/j.carbon.2009.03.004
52.
52. E. Loginova, N. C. Bartelt, P. J. Feibelmarr, and K. F. McCarty, “Factors influencing graphene growth on metal surfaces”. New J. Phys. 11, 063046 (2009).
http://dx.doi.org/10.1088/1367-2630/11/6/063046
53.
53. J. Coraux, A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. Meyer Zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, “Growth of graphene on Ir(111)”. New J. Phys. 11, 023006 (2009).
http://dx.doi.org/10.1088/1367-2630/11/3/039801
54.
54. E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, “Evidence for graphene growth by C cluster attachment”. New J. Phys. 10, 093026 (2008).
http://dx.doi.org/10.1088/1367-2630/10/9/093026
55.
55. L. S. Caputi, G. Chiarello, and L. Papagno, “Carbonaceous layers on Ni (110) and (100) studied by AES and EELS”. Surf. Sci. 162, 259263 (1985).
http://dx.doi.org/10.1016/0039-6028(85)90904-5
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3660325
Loading
/content/aip/journal/adva/1/4/10.1063/1.3660325
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3660325
2011-11-02
2016-09-25

Abstract

Water interaction with quasi-freestanding graphene deposited on Pt(111) has been investigated by using vibrational spectroscopy. Loss measurements show that water molecules dosed at room temperature can dissociate giving rise to C-H bonds. The formation of the C-H bonds strongly attenuates the optical phonons of the graphene sheet. On the other hand, at 100 K water has been found to adsorb only in molecular state. Present findings should be taken into account in engineering graphene-based devices which should work at atmospheric pressure and at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3660325.html;jsessionid=9s1X0sTYIrJw-TFFuHoHI7Se.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3660325&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3660325&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3660325'
Right1,Right2,Right3,