Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. K. Novoselov, “Graphene: Mind the gap”. Nat. Mater. 6, 720721 (2007).
2. V. W. Brar, S. Wickenburg, M. Panlasigui, C. H. Park, T. O. Wehling, Y. Zhang, R. Decker, Ç. Girit, A. V. Balatsky, S. G. Louie, A. Zettl, and M. F. Crommie, “Observation of Carrier-Density-Dependent Many-Body Effects in Graphene via Tunneling Spectroscopy”. Phys. Rev. Lett. 104, 036805 (2010).
3. R. A. Nistor, D. M. Newns, and G. J. Martyna, “The Role of Chemistry in Graphene Doping for Carbon-Based Electronics”. ACS Nano 5, 30963103 (2011).
4. B. Huang, H. J. Xiang, and S.-H. Wei, “Controlling doping in graphene through a SiC substrate: A first-principles study”. Phys. Rev. B 83, 161405 (2011).
5. E. Beheshti, A. Nojeh, and P. Servati, “A first-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage”. Carbon 49, 15611567 (2011).
6. Y. Gao and Z. Yuan, “Anisotropic low-energy plasmon excitations in doped graphene: An ab initio study”. Solid State Commun. 151, 10091013 (2011).
7. H. Gao, L. Wang, J. Zhao, F. Ding, and J. Lu, “Band Gap Tuning of Hydrogenated Graphene: H Coverage and Configuration Dependence”. J. Phys. Chem. C 115, 32363242 (2011).
8. A. Ambrosetti and P. L. Silvestrelli, “Adsorption of Rare-Gas Atoms and Water on Graphite and Graphene by van der Waals-Corrected Density Functional Theory”. J. Phys. Chem. C 115, 36953702 (2011).
9. F. Yavari, C. Kritzinger, C. Gaire, L. Song, H. Gulapalli, T. Borca-Tasciuc, P. M. Ajayan, and N. Koratkar, “Tunable Bandgap in Graphene by the Controlled Adsorption of Water Molecules”. Small 6, 25352538 (2010).
10. M. E. Suk and N. R. Aluru, “Water Transport through Ultrathin Graphene”. J. Phys. Chem. Lett. 1, 15901594 (2010).
11. A. P. Seitsonen, A. M. Saitta, T. Wassmann, M. Lazzeri, and F. Mauri, “Structure and stability of graphene nanoribbons in oxygen, carbon dioxide, water, and ammonia”. Phys. Rev. B 82, 115425 (2010).
12. J. H. Park and N. R. Aluru, “Ordering-Induced Fast Diffusion of Nanoscale Water Film on Graphene”. J. Phys. Chem. C 114, 25952599 (2010).
13. M. C. Gordillo and J. Martí, “Effect of Surface Roughness on the Static and Dynamic Properties of Water Adsorbed on Graphene”. J. Phys. Chem. B 114, 45834589 (2010).
14. M. C. Gordillo and J. Martí, “Water on graphene surfaces”. J. Phys.: Condens. Matter 22, 284111 (2010).
15. G. A. Kimmel, J. Matthiesen, M. Baer, C. J. Mundy, N. G. Petrik, R. S. Smith, Z. Dohnálek, and B. D. Kay, “No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene”. J. Am. Chem. Soc. 131, 1283812844 (2009).
16. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field in atomically thin carbon films”. Science 306, 666669 (2004).
17. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene”. Nat. Mater. 6, 652655 (2007).
18. D. Marchenko, A. Varykhalov, A. Rybkin, A. M. Shikin, and O. Rader, “Atmospheric stability and doping protection of noble-metal intercalated graphene on Ni(111)”. Appl. Phys. Lett. 98, 122111 (2011).
19. J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal'ko, “Adsorbate-Limited Conductivity of Graphene”. Phys. Rev. Lett. 101, 196803 (2008).
20. T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson, “First-principles studies of water adsorption on graphene: The role of the substrate”. Appl. Phys. Lett. 93, 202110 (2008).
21. S. Meng and S. Gao, “Formation and interaction of hydrated alkali metal ions at the graphite-water interface”. J. Chem. Phys. 125, 014708 (2006).
22. S. Meng, E. G. Wang, C. Frischkorn, M. Wolf, and S. Gao, “Consistent picture for the wetting structure of water/Ru(0001)”. Chem. Phys. Lett. 402, 384388 (2005).
23. S. Meng, E. G. Wang, and S. Gao, “Water adsorption on metal surfaces: A general picture from density functional theory studies”. Phys. Rev. B 69, 195404 (2004).
24. S. Meng, L. F. Xu, E. G. Wang, and S. Gao, “Vibrational Recognition of Hydrogen-Bonded Water Networks on a Metal Surface”. Phys. Rev. Lett. 89, 176104 (2002).
25. Y. Yang, S. Meng, and E. G. Wang, “Water adsorption on a NaCl (001) surface: A density functional theory study”. Phys. Rev. B 74, 245409 (2006).
26. Y. Yu, Q. Guo, S. Liu, E. G. Wang, and P. J. Møller, “Partial dissociation of water on a MgO(100) film”. Phys. Rev. B 68, 115414 (2003).
27. A. Politano, R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, “Purely quadratic dispersion of surface plasmon in Ag/Ni(111): the influence of electron confinement”. Phys. Status Solidi Rapid Res. Lett. (RRL) 2, 8688 (2008).
28. A. Politano, V. Formoso, and G. Chiarello, “Alkali adsorption on Ni(111) and their coadsorption with CO and O”. Appl. Surf. Sci. 254, 68546859 (2008).
29. H. Zhang, Q. Fu, Y. Cui, D. Tan, and X. Bao, “Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface”. J. Phys. Chem. C 113, 82968301 (2009).
30. P. Sutter, J. T. Sadowski, and E. Sutter, “Graphene on Pt(111): Growth and substrate interaction”. Phys. Rev. B 80, 245411 (2009).
31. T. Fujita, W. Kobayashi, and C. Oshima, “Novel structures of carbon layers on a Pt(111) surface”. Surf. Interface Anal. 37, 120123 (2005).
32. M. Gao, Y. Pan, L. Huang, H. Hu, L. Z. Zhang, H. M. Guo, S. X. Du, and H. J. Gao, “Epitaxial growth and structural property of graphene on Pt(111)”. Appl. Phys. Lett. 98, 033101 (2011).
33. B. J. Kang, J. H. Mun, C. Y. Hwang, and B. J. Cho, “Monolayer graphene growth on sputtered thin film platinum”. J. Appl. Phys. 106, 104309 (2009).
34. G. Otero, C. Gonzalez, A. L. Pinardi, P. Merino, S. Gardonio, S. Lizzit, M. Blanco-Rey, K. Van de Ruit, C. F. J. Flipse, J. Méndez, P. L. de Andrés, and J. A. Martín-Gago, “Ordered Vacancy Network Induced by the Growth of Epitaxial Graphene on Pt(111)”. Phys. Rev. Lett. 105, 216102 (2010).
35. A. Politano, A. R. Marino, V. Formoso, D. Farías, R. Miranda, and G. Chiarello, “Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)”. Phys. Rev. B 84, 033401 (2011).
36. N. A. Vinogradov, K. Schulte, M. L. Ng, A. Mikkelsen, E. Lundgren, N. Mårtensson, and A. B. Preobrajenski, “Impact of Atomic Oxygen on the Structure of Graphene Formed on Ir(111) and Pt(111)”. J. Phys. Chem. C 115, 95689577 (2011).
37. Y. Yamada, C. Sugawara, Y. Satake, Y. Yokoyama, R. Okada, T. Nakayama, M. Sasaki, T. Kondo, J. Oh, J. Nakamura, and W. W. Hayes, “He/Ar-atom scattering from molecular monolayers: C60/Pt(111) and graphene/Pt(111)”. J. Phys.: Condens. Matter 22, 304010 (2010).
38. A. Politano, A. R. Marino, V. Formoso, and G. Chiarello, “Evidence of Kohn anomalies in quasi-freestanding graphene on Pt(111)”. Carbon doi:10.1016/j.carbon.2011.1009.1028 (2011).
39. L. J. Karssemeijer and A. Fasolino, “Phonons of graphene and graphitic materials derived from the empirical potential LCBOPII”. Surf. Sci. 605, 16111615 (2011).
40. H. Yanagisawa, T. Tanaka, Y. Ishida, M. Matsue, E. Rokuta, S. Otani, and C. Oshima, “Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation”. Surf. Interface Anal. 37, 133136 (2005).
41. A. Politano, A. R. Marino, V. Formoso, and G. Chiarello, “Hydrogen bonding at the water/quasi-freestanding graphene interface”. Carbon 49, 51805184 (2011).
42. A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Mårtensson, “Controlling graphene corrugation on lattice-mismatched substrates”. Phys. Rev. B 78, 073401 (2008).
43. J. Wintterlin and M. L. Bocquet, “Graphene on metal surfaces”. Surf. Sci. 603, 18411852 (2009).
44. B. D. Thoms and J. E. Butler, “HREELS scattering mechanism from diamond surfaces”. Phys. Rev. B 50, 1745017455 (1994).
45. A. Horn, J. Biener, A. Schenk, C. Lutterloh, and J. Küppers, “H/D exchange reaction at graphitic CH groups by thermal H(D) atoms”. Surf. Sci. 331-333, 178182 (1995).
46. E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, “Elastic properties of hydrogenated graphene”. Phys. Rev. B 82, 235414 (2010).
47. A. Politano, V. Formoso, and G. Chiarello, “Chemical Reactions at Clean and Alkali-Doped Mismatched Metal/Metal Interfaces”. J. Phys. Chem. C 113, 316320 (2009).
48. A. Politano and G. Chiarello, “Enhancement of hydrolysis in alkali ultrathin layers on metal substrates in the presence of electron confinement”. Chem. Phys. Lett. 494, 8487 (2010).
49. G. Lee and E. W. Plummer, “High-resolution electron energy loss spectroscopy study on chemisorption of hydrogen on Cu(111)”. Surf. Sci. 498, 229236 (2002).
50. J. D. Jones, K. K. Mahajan, W. H. Williams, P. A. Ecton, Y. Mo, and J. M. Perez, “Formation of graphane and partially hydrogenated graphene by electron irradiation of adsorbates on graphene”. Carbon 48, 23352340 (2010).
51. K. F. McCarty, P. J. Feibelman, E. Loginova, and N. C. Bartelt, “Kinetics and thermodynamics of carbon segregation and graphene growth on Ru(0001)”. Carbon 47, 18061813 (2009).
52. E. Loginova, N. C. Bartelt, P. J. Feibelmarr, and K. F. McCarty, “Factors influencing graphene growth on metal surfaces”. New J. Phys. 11, 063046 (2009).
53. J. Coraux, A. T. N’Diaye, M. Engler, C. Busse, D. Wall, N. Buckanie, F. J. Meyer Zu Heringdorf, R. van Gastel, B. Poelsema, and T. Michely, “Growth of graphene on Ir(111)”. New J. Phys. 11, 023006 (2009).
54. E. Loginova, N. C. Bartelt, P. J. Feibelman, and K. F. McCarty, “Evidence for graphene growth by C cluster attachment”. New J. Phys. 10, 093026 (2008).
55. L. S. Caputi, G. Chiarello, and L. Papagno, “Carbonaceous layers on Ni (110) and (100) studied by AES and EELS”. Surf. Sci. 162, 259263 (1985).

Data & Media loading...


Article metrics loading...



Water interaction with quasi-freestanding graphene deposited on Pt(111) has been investigated by using vibrational spectroscopy. Loss measurements show that water molecules dosed at room temperature can dissociate giving rise to C-H bonds. The formation of the C-H bonds strongly attenuates the optical phonons of the graphene sheet. On the other hand, at 100 K water has been found to adsorb only in molecular state. Present findings should be taken into account in engineering graphene-based devices which should work at atmospheric pressure and at room temperature.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd