Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3660346
1.
1. P. Avouris, M. Freitag and V. Perebeinos, Nature Photonics 2, 341 (2008).
http://dx.doi.org/10.1038/nphoton.2008.94
2.
2. D. Mann, Y. K. Kato, A. Kinkhabwala, E. Pop, J. Cao, X. Wang, L. Zhang, Q. Wang, J. Guo and H. Dai, Nature Nanotech. 2, 33 (2007).
http://dx.doi.org/10.1038/nnano.2006.169
3.
3. F. Xia, M. Steiner, Y-M. Lin and P. Avouris, Nature Nanotech. 3, 609 (2008).
http://dx.doi.org/10.1038/nnano.2008.241
4.
4. Y. Fan, S. B. Singer, R. Bergstrom and B. C. Regan, Phys.Rev.Lett., 102, 187402 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.187402
5.
5. M. E. Itkis, A. Yu, and R. C. Haddon, Nano Lett. 8, 22242228 (2008).
http://dx.doi.org/10.1021/nl080814u
6.
6. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, C. Thomsen, and A. Lakhtakia, Phys.Rev. B 81, 205423 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.205423
7.
7. T. Nakanishi and T. Ando, J. Phys. Soc. Japan 78, 114708 (2009).
http://dx.doi.org/10.1143/JPSJ.78.114708
8.
8. M. E. Itkis, S. Nyogi, M. E. Meng, M. A. Hamon, H. Hu and R. C. Haddon, Nano Lett. 2, 155159 (2002).
http://dx.doi.org/10.1021/nl0156639
9.
9. A. Pekker and K. Kamaras, arXiv:1101.4586 [cond-mat.mtrl.sci] 13 March 2011.
10.
10. A. M. Nemilentsau, G. Ya. Slepyan, and S. A. Maksimenko, Phys.Rev.Lett. 99, 147403 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.147403
11.
11. G. W. Hanson, IEEE Trans. Antennas Propagat. 53, 34263435 (2005).
http://dx.doi.org/10.1109/TAP.2005.858865
12.
12. K. Fu, R. Zannoni, C. Chan, S. H. Adams, J. Nicholson, E. Polizzi and K. S. Yngvesson, Appl.Phys.Lett. 92, 033105 (2008).
http://dx.doi.org/10.1063/1.2837188
13.
13. D. F. Filipovic, G. P. Gauthier, S Raman and G. M. Rebeiz, IEEE Trans. Antennas Propagat. 45, 760766 (1997).
http://dx.doi.org/10.1109/8.575618
14.
14. C. Balanis, C.A., Antenna Theory, (John Wiley and Sons, 2005).
15.
15. R. Krupke and F. Hennrich, Adv. Eng. Mater. 7, 111 (2005).
http://dx.doi.org/10.1002/adem.200400170
16.
16. J. A. Schuller, T. Taubner and M. L. Brongersma, Nature Photonics 3, 658661 (2009).
http://dx.doi.org/10.1038/nphoton.2009.188
17.
17. Puscasu, I. & Schaich, W. L. Appl. Phys. Lett. 92, 233102 (2008).
http://dx.doi.org/10.1063/1.2938716
18.
18. Note that the dips at 4 THz spacings have not been normalized out in the spectra shown.
19.
19. D. Mann, E. Pop, J. Cao, Q. Wang, K. Goodson, and H. Dai, J. Phys. Chem. Letters, 110, 15021505 (2006).
20.
20. Yngvesson, K. S. , “Microwave Semiconductor Devices, Kluwer Academic (1991).
21.
21. Pennington G. and Goldsman, N. , Phys. Rev. B 68, 045426 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.045426
22.
22. Pennington, G. and Wickenden, A. E. , J. Appl. Phys. 105, 094316 (2009).
http://dx.doi.org/10.1063/1.3123806
23.
23. Conwell, E. , Nano Lett. 8, 1253 (2008).
http://dx.doi.org/10.1021/nl073043n
24.
24. M. A. Kuroda and J.-P. Leburton, Phys. Rev. B 80, 165417 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165417
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3660346
Loading
/content/aip/journal/adva/1/4/10.1063/1.3660346
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3660346
2011-11-02
2016-12-08

Abstract

In this letter an experimental method is introduced that allows detection of terahertz (THz) radiation from arrays of joule-heated Single-Walled Carbon Nanotubes(SWCNTs), by coupling this radiation through integrated antennas and a silicon lens. The radiation forms a diffraction-limited beam with a total maximum radiated power of 450 nW, significantly greater than the power estimated from Nyquist thermal noise (8 nW). The physical radiation process is unknown at this stage, but possible explanations for the high radiated power are discussed briefly. The emission has a typical bandwidth of 1.2 THz and can be tuned to different frequencies by changing the dimensions of the antennas. Arrays of the devices could be integrated in CMOS integrated circuits, and find application in THz systems, such as in near-range medical imaging.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3660346.html;jsessionid=we5UwIyspXnS5uHC_v4dJgsu.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3660346&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3660346&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3660346'
Right1,Right2,Right3,