Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. M. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381(20), 67880 (1996).
2. S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, J. Chem. Phys. 104, 2089 (1996).
3. D. D. Majumder, R. Banerjee, G. H. Ulrichs, I. Mewis, and A. Goswami, IETE Technical Review 24(1), 925 (2007).
4. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett. 73(26), 38423844 (1998).
5. P. M. Ajyan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).
6. R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, Scripta Mater. 53, 1159 (2005).
7. Y. Feng, H. L. Yuan, and M. Zhang, Mater. Charact. 55, 211 (2005).
8. G. D. Zhan, J. D. Kuntz, J. L. Wan, and A. K. Mukherjee, Nat. Mater. 2(1), 38 (2003).
9. Y. Morisada, Y. Miyamoto, Y. Takaura, K Hirota, and N Tamari, Int. J. Refract. Met. Hard Matter. 25(4), 322 (2007).
10. A. Mukhopadhyay, B. T. T. Chu, M. L. H. Green, and R. I. Todd, Acta Mater. 58, 26852697 (2010).
11. A. R. Boccaccini, B. J. C. Thomas, G. Brustin, and P. Colombo, J. Mater. Sci. 42, 20302036 (2007).
12. A. Ghosh, S. Ghosh, S. Das, P. K. Das, D. D. Majumdar, and R. Banerjee, Chem. Phys. Lett. 496, 321325 (2010).
13. C. S. Xiang, Y. B. Pan, X. J. Liu, X. W. Sun, X. M. Shi, and J. K. Guo, Appl. Phys. Lett. 87, 123103 (2005).
14. Y. J. Zhang, Y. F. Shen, D. X. Han, Z. J. Wang, X. J. Song, and L. Niu, J. Mater. Chem. 16, 459297 (2006).
15. S. Sebastian, and M. A. Khadar, J. Mater. Sci. 40, 16551659 (2005).
16. H. Li, and R. C. Bradt, J. Mater. Sci. 31, 10651070 (1996).
17. Y. Liu, W. Qian, Q. Zhang, A. Cao, Z. Li, W. Zhou, Y. Ma, and F. Wei, Nano Lett. 8(5), 13231327 (2008).
18. T. Wei, K. Wang, Z. Fan, W. Qian and F. Wei, Carbon, 48, 305312 (2010).
19. C. Cao, A. Reiner, C. Chung, S. H. Chang, I. Kao, R. V. Kukta and C. S. Korach, Carbon, 49, 31903199 (2011).
20. D. B. Marshall, T. Noma, and A. G. Evans, J. Am. Ceram. Soc. 65, C175 (1982).
21. D. G. Holloway, Phys. Educ. 3, 317322 (1968).
22. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76(14), 25112514 (1996).
23. Y. W. Bao, W. Wang, and Y. C. Zhou, Acta Mater. 52, 53975404 (2004).

Data & Media loading...


Article metrics loading...



A borosilicate glasscomposite has been fabricated incorporating Single Wall Carbon Nanotubes(SWCNT) in the glass matrix by melt-quench technique. Hardness and the fracture toughness of the composite, were found to increase moderately with respect to the base glass. Interestingly one can observe accumulation of SWCNT bundles around the crack zone though no such accumulation was observed in the crack free indentation zone. The enhanced hardness of the composite was discussed by correlating the cushioning as well as toughening behavior of the agglomerated SWCNT bundles. On the other hand enhanced plastic flow was proposed to be the prime reason for the accumulation of SWCNT bundles around the crack, which increases the toughness of the composite by reducing the crack length. Moreover to ascertain the enhanced plasticity of the composite than that of the glass we calculated the recovery resistance of glass and the composite where recovery resistance of composite was found to be higher than that of the glass.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd