1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Enhanced mechanical properties of single walled carbon nanotube-borosilicate glass composite due to cushioning effect and localized plastic flow
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3660378
1.
1. M. M. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381(20), 67880 (1996).
http://dx.doi.org/10.1038/381678a0
2.
2. S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, J. Chem. Phys. 104, 2089 (1996).
http://dx.doi.org/10.1063/1.470966
3.
3. D. D. Majumder, R. Banerjee, G. H. Ulrichs, I. Mewis, and A. Goswami, IETE Technical Review 24(1), 925 (2007).
4.
4. L. S. Schadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett. 73(26), 38423844 (1998).
http://dx.doi.org/10.1063/1.122911
5.
5. P. M. Ajyan, O. Stephan, C. Colliex, and D. Trauth, Science 265, 1212 (1994).
http://dx.doi.org/10.1126/science.265.5176.1212
6.
6. R. George, K. T. Kashyap, R. Rahul, and S. Yamdagni, Scripta Mater. 53, 1159 (2005).
http://dx.doi.org/10.1016/j.scriptamat.2005.07.022
7.
7. Y. Feng, H. L. Yuan, and M. Zhang, Mater. Charact. 55, 211 (2005).
http://dx.doi.org/10.1016/j.matchar.2005.05.003
8.
8. G. D. Zhan, J. D. Kuntz, J. L. Wan, and A. K. Mukherjee, Nat. Mater. 2(1), 38 (2003).
http://dx.doi.org/10.1038/nmat793
9.
9. Y. Morisada, Y. Miyamoto, Y. Takaura, K Hirota, and N Tamari, Int. J. Refract. Met. Hard Matter. 25(4), 322 (2007).
http://dx.doi.org/10.1016/j.ijrmhm.2006.08.005
10.
10. A. Mukhopadhyay, B. T. T. Chu, M. L. H. Green, and R. I. Todd, Acta Mater. 58, 26852697 (2010).
http://dx.doi.org/10.1016/j.actamat.2010.01.001
11.
11. A. R. Boccaccini, B. J. C. Thomas, G. Brustin, and P. Colombo, J. Mater. Sci. 42, 20302036 (2007).
http://dx.doi.org/10.1007/s10853-006-0540-7
12.
12. A. Ghosh, S. Ghosh, S. Das, P. K. Das, D. D. Majumdar, and R. Banerjee, Chem. Phys. Lett. 496, 321325 (2010).
http://dx.doi.org/10.1016/j.cplett.2010.07.069
13.
13. C. S. Xiang, Y. B. Pan, X. J. Liu, X. W. Sun, X. M. Shi, and J. K. Guo, Appl. Phys. Lett. 87, 123103 (2005).
http://dx.doi.org/10.1063/1.2051806
14.
14. Y. J. Zhang, Y. F. Shen, D. X. Han, Z. J. Wang, X. J. Song, and L. Niu, J. Mater. Chem. 16, 459297 (2006).
http://dx.doi.org/10.1039/b612317a
15.
15. S. Sebastian, and M. A. Khadar, J. Mater. Sci. 40, 16551659 (2005).
http://dx.doi.org/10.1007/s10853-005-0666-z
16.
16. H. Li, and R. C. Bradt, J. Mater. Sci. 31, 10651070 (1996).
http://dx.doi.org/10.1007/BF00352908
17.
17. Y. Liu, W. Qian, Q. Zhang, A. Cao, Z. Li, W. Zhou, Y. Ma, and F. Wei, Nano Lett. 8(5), 13231327 (2008).
http://dx.doi.org/10.1021/nl0733785
18.
18. T. Wei, K. Wang, Z. Fan, W. Qian and F. Wei, Carbon, 48, 305312 (2010).
http://dx.doi.org/10.1016/j.carbon.2009.09.008
19.
19. C. Cao, A. Reiner, C. Chung, S. H. Chang, I. Kao, R. V. Kukta and C. S. Korach, Carbon, 49, 31903199 (2011).
http://dx.doi.org/10.1016/j.carbon.2011.03.043
20.
20. D. B. Marshall, T. Noma, and A. G. Evans, J. Am. Ceram. Soc. 65, C175 (1982).
http://dx.doi.org/10.1111/j.1151-2916.1982.tb10782.x
21.
21. D. G. Holloway, Phys. Educ. 3, 317322 (1968).
http://dx.doi.org/10.1088/0031-9120/3/6/308
22.
22. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76(14), 25112514 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.2511
23.
23. Y. W. Bao, W. Wang, and Y. C. Zhou, Acta Mater. 52, 53975404 (2004).
http://dx.doi.org/10.1016/j.actamat.2004.08.002
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3660378
Loading
/content/aip/journal/adva/1/4/10.1063/1.3660378
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3660378
2011-11-02
2014-11-28

Abstract

A borosilicate glasscomposite has been fabricated incorporating Single Wall Carbon Nanotubes(SWCNT) in the glass matrix by melt-quench technique. Hardness and the fracture toughness of the composite, were found to increase moderately with respect to the base glass. Interestingly one can observe accumulation of SWCNT bundles around the crack zone though no such accumulation was observed in the crack free indentation zone. The enhanced hardness of the composite was discussed by correlating the cushioning as well as toughening behavior of the agglomerated SWCNT bundles. On the other hand enhanced plastic flow was proposed to be the prime reason for the accumulation of SWCNT bundles around the crack, which increases the toughness of the composite by reducing the crack length. Moreover to ascertain the enhanced plasticity of the composite than that of the glass we calculated the recovery resistance of glass and the composite where recovery resistance of composite was found to be higher than that of the glass.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3660378.html;jsessionid=19j00efi3m30k.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3660378&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhanced mechanical properties of single walled carbon nanotube-borosilicate glass composite due to cushioning effect and localized plastic flow
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3660378
10.1063/1.3660378
SEARCH_EXPAND_ITEM