1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Optical and electrical properties of spray pyrolysis deposited nano-crystalline BiFeO3 films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3662093
1.
1. Henglin A , Chem. Rev. 89 1861 (1989).
http://dx.doi.org/10.1021/cr00098a010
2.
2. Agfeldt A and Gratzel M , Chem.Rev. 95, 49 (1995).
http://dx.doi.org/10.1021/cr00033a003
3.
3. Banerjee R , Jayakrishnan R and Ayyub P , J. Phys.: Condens. Matter 12, 10647 (2000).
http://dx.doi.org/10.1088/0953-8984/12/50/325
4.
4. Ganeev R A , Baba M , Morita M , Rau D , Fujii H , Ryasnyansky A I , Ishizawa N , Suzuki M and Kuroda H , J.Opt. A: Pure Appl. Opt. 6, 447 (2004).
http://dx.doi.org/10.1088/1464-4258/6/4/024
5.
5. Beecroft L L and Ober C K , Chem. Mater. 9, 1302 (1997).
http://dx.doi.org/10.1021/cm960441a
6.
6. Liu Y C , Xu H Y , Mu R , Henderson D O , Lu Y M , Zhang J Y , Shen D Z , Fan X W and White C W , Appl. Phys. Lett. 83, 1210 (2003).
http://dx.doi.org/10.1063/1.1591248
7.
7. S. J. Clark and J. Robertson, Appl. Phys. Lett. 90, 132903 (2007).
http://dx.doi.org/10.1063/1.2716868
8.
8. P. Fischer, M. Polomska, I. Sosnowska, and M. Szymanskig, J.Phys.C 13, 1931 (1980).
http://dx.doi.org/10.1088/0022-3719/13/10/012
9.
9. Seung-Hyub Baek, Chad M. Folkman, Jae-Wan Park, Sanghan Lee, Chung-Wung Bark, Thomas Tybell, Chang-Beom Eom, Adv.Mater.xx, 1-5 (2011).
10.
10. V. V. Shvartsman, W. Kleemann, R. Haumont, and J. Kreisel, Appl. Phys. Lett. 90, 172115 (2007).
http://dx.doi.org/10.1063/1.2731312
11.
11. D. Lebeugle, D. Colson, A. Forget, M. Viret, P. Bonville, J. F. Marucco, and S. Fusil, Phys. Rev. B 76, 024116 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.024116
12.
12. J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin, and K. M. Rabe, Phys.Rev.B 71, 014113 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014113
13.
13. S. J. Clark and J. Robertson, Appl.Phys.Lett. 90, 132903 (2007).
http://dx.doi.org/10.1063/1.2716868
14.
14. R. Palai, R. S. Katiyar, H. Schmid, P. Tissot, S. J. Clark, J. Robertson, S. A. T. Redfern, G. Catalan, J. F. Scott, Phys, Rev.B, 77, 014110 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014110
15.
15. Y. Xu, M. Shen, Mat.Lett. 62, 3600 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.04.006
16.
16. Takeshi Kawae, Hisashi Tsuda, and Akiharu Morimoto, Appl.Phys.Express 1, 051601 (2008).
http://dx.doi.org/10.1143/APEX.1.051601
17.
17. V. Fruth, E. Tenea, M. Gartner, A. Anastasescu, D. Berger, R. Ramer, and M. Zaharescu, J. Eur. Ceram. Soc. 27, 937 (2007).
http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.135
18.
18. T. Kanai, S. Ohkoshi, and K. Hashimoto, J. Phys. Chem. Solids 64, 391 (2003).
http://dx.doi.org/10.1016/S0022-3697(02)00284-6
19.
19. F. Gao, Y. Yuan, K. F. Wang, X. Y. Chen, F. Chen, and J. M. Liu, Appl. Phys. Lett. 89, 102506 (2006).
http://dx.doi.org/10.1063/1.2345825
20.
20. Waren B E , X-ray diffraction (Reading, MA: Addison-Wesely) p-26419.
21.
21. B. Elidrissi, M. Addo, M. Regragui, C. Monty, A. Bougrine, and A. Kachouane, Thin Solid Films 379, 23 (2000).
http://dx.doi.org/10.1016/S0040-6090(00)01404-8
22.
22. Moses A. E. R , Nehru L. C , Jayachandra M , and Sanjeeviraja C , Cryst.Res.Technol. 42, 867 (2007).
http://dx.doi.org/10.1002/crat.200710918
23.
23. S. Logothetidis, J. Appl. Phys. 65, 2416 (1983).
http://dx.doi.org/10.1063/1.343401
24.
24. A. Kumar, R. C. Rai, N. J. Podraza, S. Denev, M. Ramirez, Y.-H. Chu, L. W. Martin, J. Ihlefeld, T. Heeg, J. Schubert, D. G. Schlom, J. Orenstein, R. Ramesh, R. W. Collins, J. L. Musfeldt, and V. Gopalan, Appl. Phys. Lett. 92, 121915 (2008).
http://dx.doi.org/10.1063/1.2901168
25.
25. Cameliu Himcinschi, Ionela Vrejoiu, Marion Friedrich, Li Ding, Christoph Cobet, Norbert Esser, Marin Alexe, and Dietrich R. T. Zahn , Phys. Status Solidi C 7, 296 (2010).
http://dx.doi.org/10.1002/pssc.200982414
26.
26. K. L. Chopra, Thin Film Phenomena (Mc Graw-Hill, New York, 1969).
27.
27. J. C. Manifacier, M. D. Murcia, J. P. Fillard, E. Vicario, Thin Solid Films 41 127 (1997).
http://dx.doi.org/10.1016/0040-6090(77)90395-9
28.
28. Z. G. Hu, F. W. Shi, T. Lin, Z. M. Huang, G. S. Wang, Y. N. Wu, J. H. Chu, Phys. Lett. A 320, 478 (2004).
http://dx.doi.org/10.1016/j.physleta.2003.12.003
29.
29. F. W. Shi, Z. G. Hu, G. S. Wang, T. Lin, J. H. Ma, X. J. Meng, J. L. Sun, J. H. Chu, Thin Solid Films 458, 223 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.09.059
30.
30. Z. Huang, X. Meng, Z. Zhang, J. Chu, J. Phys. D Appl. Phys. 35, 246 (2002).
http://dx.doi.org/10.1088/0022-3727/35/3/313
31.
31. Pancov J , Optical Processes in Semiconductors (Englewood Cliffs, NJ: Prentice-Hall, 1979).
32.
32. Peng Chen, Xiaoshan Xu, Christopher Koenigsmann, Alexander C. Santulli, Stanislaus S. Wong, and Janice L. Musfeldt, Nano Lett. 10, 4526 (2010).
http://dx.doi.org/10.1021/nl102470f
33.
33. Vilas Shelke, Dipanjan Mazumdar, Sergey Faleev, Oleg Mryasov, Stephen jesse, Sergei Kalinin, Arthur Baddorf and Arunava Gupta, Materials Science, arXiv:1010.0604v2.
34.
34. P. Chen, N. J. Podraza, X. S. Xu, A. Melville, E. Vlahos, V. Gopalan, R. Ramesh, D. G. Schlom, and J. L. Musfeldt, Appl. Phys. Lett. 96, 131907 (2010).
http://dx.doi.org/10.1063/1.3364133
35.
35. A. D. Yoffe, Adv.phys. 42, 173 (1993).
http://dx.doi.org/10.1080/00018739300101484
36.
36. N. Benramdane, W. A. Murad, R. H. Misho, M. Ziane, Z. Kebbab, Mater. Chem. Phys. 48, 119 (1997).
http://dx.doi.org/10.1016/S0254-0584(97)80104-6
37.
37. Swanepoel R , J. Phys., E J. Sci. Instrum, 16, 1214 (1983).
http://dx.doi.org/10.1088/0022-3735/16/12/023
38.
38. T. Wiktorezyk, Thin Solid Films 405, 238 (2002).
http://dx.doi.org/10.1016/S0040-6090(01)01760-6
39.
39. Chang Q. Sun, Progress in Solid State Chemistry, 35, 1 (2007).
http://dx.doi.org/10.1016/j.progsolidstchem.2006.03.001
40.
40. H. Wang, Y. Zheng, M.-Q. Cai, H. Huang, and H. L. W. Chan, Solid State Commun. 149, 641 (2009).
http://dx.doi.org/10.1016/j.ssc.2009.01.023
41.
41. H. Yang, Y. Q. Wang, 2 H. Wang, and Q. X. Jia, Appl. Phys. Lett. 96, 012909 (2010).
http://dx.doi.org/10.1063/1.3291044
42.
42. T. Choi, S. Lee, Y. J. Choi, V. Kiryukhin, W. W. Chong, Science, 324, 3 (2009).
43.
43. J. E. Brus, J. Chem. Phys. 80, 4403 (1984).
http://dx.doi.org/10.1063/1.447218
44.
44. A. D. Yoffe, Adv. Phys. 42, 173 (1993).
http://dx.doi.org/10.1080/00018739300101484
45.
45. Y. Z. Wang, G. W. Qiao, X. D. Liu, B. Z. Ding, and Z. Q. Hu, Mater. Lett. 17, 152 (1993).
http://dx.doi.org/10.1016/0167-577X(93)90075-9
46.
46. I. Bakonyi, E. Toth-Kadar, T. Tarnoczi, L. Varga, A. Cziraki, I. Gerocs, and B. Fogarassy, Nanostruct. Mater. 3, 155 (1993).
http://dx.doi.org/10.1016/0965-9773(93)90073-K
47.
47. L. Wu, W. Tien-Shou, and W. Chung-Chuang, J. Phys. D: Appl. Phys. 13, 259 (1980).
http://dx.doi.org/10.1088/0022-3727/13/2/023
48.
48. A. J. Hauser, J. Zhang, L. Miee, R. A. Ricciardo, P. M. Woodward, T. L. Gustafson, L. J. Brillson, and F. Y. Yang, Appl. Phys. Lett. 92, 222901 (2008).
http://dx.doi.org/10.1063/1.2939101
49.
49. M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
50.
50. J. Frenkel, Tech. Phys. USSR 5, 685 (1938).
51.
51. G. W. Pabst, L. W. Martin, Y. H. Chu, and R. Ramesh, Appl. Phys. Lett. 90, 072902 (2007).
http://dx.doi.org/10.1063/1.2535663
52.
52. B. Nagaraj, S. Aggarwal, T. K. Song, T. Sawhney, and R. Ramesh, Phys. Rev. B 59, 16022 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.16022
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3662093
Loading
/content/aip/journal/adva/1/4/10.1063/1.3662093
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3662093
2011-11-04
2014-10-30

Abstract

The nano-crystalline BiFeO3 were prepared under controlled substrate temperature by spray pyrolysis method. Their structural, optical and electrical properties were studied and correlated. A blueshift (Δλ ∼ 8.17 nm) in the absorbance peaks was observed in the films with decrease in grain size. The absorption coefficient spectra show defect transitions at 1.9 and 2.3 eV in large grain size films due to oxygen vacancies. The lowest leakage was observed in smaller grain size (< 20 nm) films due to negligible oxygen vacancies, smooth surface roughness and large energy bang gap. The Poole-Frankel conduction mechanism has been found to be the predominant mechanism for the leakage current.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3662093.html;jsessionid=11cvwp3y39vsl.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3662093&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Optical and electrical properties of spray pyrolysis deposited nano-crystalline BiFeO3 films
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3662093
10.1063/1.3662093
SEARCH_EXPAND_ITEM