Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3664138
1.
1. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
http://dx.doi.org/10.1063/1.1482786
2.
2. V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Stat. Sol. B 229, R1 (2002).
http://dx.doi.org/10.1002/1521-3951(200202)229:33.0.CO;2-O
3.
3. Y. Ishitani, W. Terashima, S. B. Che, and A. Yoshikawa, Phys. Stat. Sol. C 3, 1850 (2006).
http://dx.doi.org/10.1002/pssc.200565386
4.
4. H. Lu, W. J. Schaff, J. Hwang, H. Wu, G. Koley, and L. F. Eastman, Appl. Phys. Lett. 79, 1489 (2001).
http://dx.doi.org/10.1063/1.1402649
5.
5. Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys. Part 1 42, 2549 (2003).
http://dx.doi.org/10.1143/JJAP.42.2549
6.
6. C. J. Lu, L. A. Bendersky, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 83, 2817 (2003).
http://dx.doi.org/10.1063/1.1616659
7.
7. E. Dimakis, J. Z. Domagala, A. Delimitis, P. Komninou, A. Adikimenakis, E. Iliopoulos, and A. Georgakilas, Superlatt. Microstruct. 40, 246 (2006).
http://dx.doi.org/10.1016/j.spmi.2006.09.012
8.
8. L. F. J. Piper, T. D. Veal, C. F. McConville, L. Hai, and W. J. Schaff, Appl. Phys. Lett. 88, 252109 (2006).
http://dx.doi.org/10.1063/1.2214156
9.
9. V. Lebedev, V. Cimalla, T. Baumann, O. Ambacher, F. M. Morales, J. G. Lozano, and D. Gonzalez, J. Appl. Phys. 100, 094903 (2006).
http://dx.doi.org/10.1063/1.2363234
10.
10. X. Wang, S.-B. Che, Y. Ishitani, and A. Yoshikawa, Appl. Phys. Lett. 90, 151901 (2007).
http://dx.doi.org/10.1063/1.2720717
11.
11. T. Akagi, K. Kosaka, S. Harui, D. Muto, H. Naoi, T. Araki, and Y. Nanishi, J. Electron. Mater. 37, 603 (2008).
http://dx.doi.org/10.1007/s11664-007-0373-4
12.
12. A. Usui, H. Sunakawa, A. Sakai, and A. Yamaguchi, Jpn. J. Appl. Phys. 36, L899 (1997).
http://dx.doi.org/10.1143/JJAP.36.L899
13.
13. K. Hiramatsu, J. Phys.: Condens. Matter 13, 6961 (2001).
http://dx.doi.org/10.1088/0953-8984/13/32/306
14.
14. K. Sugita, A. Hashimoto, and A. Yamamoto, Phys. Stat. Sol. C 6, S393 (2009).
http://dx.doi.org/10.1002/pssc.200880941
15.
15. Y. Kumagai, H. Adachi, A. Otake, Y. Higashikawa, R. Togashi, H. Murakami, and A. Koukitu, Phys. Stat. Sol. C 7, 2022 (2010).
http://dx.doi.org/10.1002/pssc.200983519
16.
16. G. Koblmuüller, C. S. Gallinat, S. Bernardis, J. S. Speck, G. D. Chern, D. Readinger, H. Shen, and M. Wraback, Appl. Phys. Lett. 89, 071902 (2006).
http://dx.doi.org/10.1063/1.2335685
17.
17. J. Kamimura, K. Kishino, and A. Kikuchi, Appl. Phys. Lett. 97, 141913 (2010).
http://dx.doi.org/10.1063/1.3488824
18.
18. T. Araki, Y. Saito, T. Yamaguchi, M. Kurouchi, Y. Nanishi, and H. Naoi, J. Vac. Sci. Technol. B 22, 2139 (2004).
http://dx.doi.org/10.1116/1.1771682
19.
19. D. Muto, T. Araki, H. Naoi, F. Matsuda, and Y. Nanishi, Phys. Status Solidi A 202, 773 (2005).
http://dx.doi.org/10.1002/pssa.200461439
20.
20. A. A. Klochikhin, V. Y. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, Phys. Rev. B 71, 195207 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.195207
21.
21. X. Wang, S. B. Che, Y. Ishitani, and A. Yoshikawa, J. Appl. Phys. 99, 073512 (2006).
http://dx.doi.org/10.1063/1.2190720
22.
22. X. Wang, S. B. Che, Y. Ishitani and A. Yoshikawa, Jpn. J. Appl. Phys. 45, L730 (2006).
http://dx.doi.org/10.1143/JJAP.45.L730
23.
23. Y. L. Chang, Z. Mi, and F. Li, Adv. Funct. Mater. 20, 4146 (2010).
http://dx.doi.org/10.1002/adfm.201000739
24.
24. C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu and K. H. Chen, Appl. Phys. Lett. 91, 181912 (2007).
http://dx.doi.org/10.1063/1.2804568
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3664138
Loading
/content/aip/journal/adva/1/4/10.1063/1.3664138
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3664138
2011-11-11
2016-09-27

Abstract

The orientation-dependent lateral growth of InN was studied and the epitaxial lateral overgrowth (ELO) of InN by rf-plasma-assisted molecular-beam epitaxy was demonstrated for the first time using stripe molybdenum (Mo)-mask-patterned sapphire (0001) substrates. Transmission electron microscopy observation revealed a high dislocation density of ∼5x10-9 cm-2 in the window region. By contrast, very few threading dislocations were observed in the wing region. In particular, there were no threading dislocations in the superficial layer of up to 3 μm width. An InN ELO sample exhibited narrow near-IR emission with a peak photon energy of 0.677 eV and a linewidth of 16.7 meV at 4 K.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3664138.html;jsessionid=_GNr8al7L2gTjqvrndyaoHNp.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3664138&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3664138&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3664138'
Right1,Right2,Right3,