Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3664751
1.
1. J. L. Sabourin, G. A. Risha, R. A. Yetter, S. F. Son and B. C. Tappan, Combustion and Flame 154 (3), 587600 (2008).
http://dx.doi.org/10.1016/j.combustflame.2008.05.015
2.
2. W. Vedder and D. A. Vermilye, Transactions of the Faraday Society 65 (554P), 561564 (1969).
http://dx.doi.org/10.1039/tf9696500561
3.
3. A. R. Studart, M. D. M. Innocentini, I. R. Oliveira and V. C. Pandolfelli, Journal of the European Ceramic Society 25 (13), 31353143 (2005).
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.07.004
4.
4. M. Digne, P. Sautet, P. Raybaud, H. Toulhoat and E. Artacho, Journal of Physical Chemistry B 106 (20), 51555162 (2002).
http://dx.doi.org/10.1021/jp014182a
5.
5. Belitsku.D, J Electrochem Soc 117 (8), 10971099 (1970).
http://dx.doi.org/10.1149/1.2407730
6.
6. X. F. Ma and M. R. Zachariah, International Journal of Hydrogen Energy 35 (6), 22682277 (2010).
http://dx.doi.org/10.1016/j.ijhydene.2010.01.011
7.
7. G. A. Risha, S. F. Son, R. A. Yetter, V. Yang and B. C. Tappan, Proceedings of the Combustion Institute 31 (2), 20292036 (2007).
http://dx.doi.org/10.1016/j.proci.2006.08.056
8.
8. J. Petrovic and G. Thomas, Reaction of Aluminum with Water to Produce Hydrogen (U.S. Department of Energy, Washington, DC, 2008).
9.
9. Z. Y. Deng, J. M. F. Ferreiraw, Y. Tanaka and J. H. Ye, Journal of the American Ceramic Society 90 (5), 15211526 (2007).
http://dx.doi.org/10.1111/j.1551-2916.2007.01546.x
10.
10. E. McCafferty, Corrosion Science 45 (7), 14211438 (2003).
http://dx.doi.org/10.1016/S0010-938X(02)00231-7
11.
11. W. Q. Wang, R. Clark, A. Nakano, R. K. Kalia and P. Vashishta, Applied Physics Letters 95 (26), 261901 (2009).
http://dx.doi.org/10.1063/1.3268436
12.
12. A. Bongiorno and U. Landman, Physical Review Letters 95 (10), 106102 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.106102
13.
13. F. Shimojo, A. Nakano, R. K. Kalia and P. Vashishta, Physical Review E 77 (6), 066103 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.066103
14.
14. Y. Huang, G. A. Risha, V. Yang and R. A. Yetter, Combustion and Flame 156 (1), 513 (2009).
http://dx.doi.org/10.1016/j.combustflame.2008.07.018
15.
15. Y. Q. Yang, S. F. Wang, Z. Y. Sun and D. D. Dlott, Applied Physics Letters 85 (9), 14931495 (2004).
http://dx.doi.org/10.1063/1.1785291
16.
16. K. Park, D. Lee, A. Rai, D. Mukherjee and M. R. Zachariah, Journal of Physical Chemistry B 109 (15), 72907299 (2005).
http://dx.doi.org/10.1021/jp048041v
17.
17. C. E. Bunker, M. J. Smith, K. A. S. Fernando, B. A. Harruff, W. K. Lewis, J. R. Gord, E. A. Guliants and D. K. Phelps, ACS Appl Mater Inter 2 (1), 1114 (2010).
http://dx.doi.org/10.1021/am900757r
18.
18. D. E. Bergeron, A. W. Castleman, T. Morisato and S. N. Khanna, Science 304 (5667), 8487 (2004).
http://dx.doi.org/10.1126/science.1093902
19.
19. A. W. Castleman and S. N. Khanna, Journal of Physical Chemistry C 113 (7), 26642675 (2009).
http://dx.doi.org/10.1021/jp806850h
20.
20. P. J. Roach, W. H. Woodward, A. W. Castleman, A. C. Reber and S. N. Khanna, Science 323 (5913), 492495 (2009).
http://dx.doi.org/10.1126/science.1165884
21.
21. A. C. Reber, S. N. Khanna, P. J. Roach, W. H. Woodward and A. W. Castleman, J Phys Chem A 114 (20), 60716081 (2010).
http://dx.doi.org/10.1021/jp911136s
22.
22. F. Shimojo, S. Ohmura, R. K. Kalia, A. Nakano and P. Vashishta, Physical Review Letters 104 (12), 126102 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.126102
23.
23. S. Ohmura, F. Shimojo, R. K. Kalia, M. Kunaseth, A. Nakano and P. Vashishta, Journal of Chemical Physics 134 (24), 244702 (2011).
http://dx.doi.org/10.1063/1.3602326
24.
24. N. Agmon, Chemical Physics Letters 244 (5-6), 456462 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00905-J
25.
25. M. Tuckerman, K. Laasonen, M. Sprik and M. Parrinello, Journal of Chemical Physics 103 (1), 150161 (1995).
http://dx.doi.org/10.1063/1.469654
26.
26. M. Tuckerman, K. Laasonen, M. Sprik and M. Parrinello, Journal of Physical Chemistry 99 (16), 57495752 (1995).
http://dx.doi.org/10.1021/j100016a003
27.
27. D. Borgis, G. Tarjus and H. Azzouz, Journal of Physical Chemistry 96 (8), 31883191 (1992).
http://dx.doi.org/10.1021/j100187a003
28.
28. U. W. Schmitt and G. A. Voth, Journal of Chemical Physics 111 (20), 93619381 (1999).
http://dx.doi.org/10.1063/1.480032
29.
29. J. P. Perdew, K. Burke and M. Ernzerhof, Physical Review Letters 77 (18), 38653868 (1996).
http://dx.doi.org/10.1103/PhysRevLett.77.3865
30.
30. P. E. Blochl, O. Jepsen and O. K. Andersen, Physical Review B 49 (23), 1622316233 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16223
31.
31. G. Kresse and D. Joubert, Physical Review B 59 (3), 17581775 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.1758
32.
32. G. Kresse and J. Hafner, Physical Review B 49 (20), 1425114269 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.14251
33.
33. F. Shimojo, R. K. Kalia, A. Nakano and P. Vashishta, Computer Physics Communications 140 (3), 303314 (2001).
http://dx.doi.org/10.1016/S0010-4655(01)00247-8
34.
34. S. Nose, Molecular Physics 52 (2), 255268 (1984).
http://dx.doi.org/10.1080/00268978400101201
35.
35. W. G. Hoover, Physical Review A 31 (3), 16951697 (1985).
http://dx.doi.org/10.1103/PhysRevA.31.1695
36.
36. M. Tuckerman, B. J. Berne and G. J. Martyna, Journal of Chemical Physics 97 (3), 19902001 (1992).
http://dx.doi.org/10.1063/1.463137
37.
37. G. Henkelman and H. Jonsson, Journal of Chemical Physics 113 (22), 99789985 (2000).
http://dx.doi.org/10.1063/1.1323224
38.
38. D. G. Truhlar, B. C. Garrett and S. J. Klippenstein, Journal of Physical Chemistry 100 (31), 1277112800 (1996).
http://dx.doi.org/10.1021/jp953748q
39.
39. K. C. Hass, W. F. Schneider, A. Curioni and W. Andreoni, Science 282 (5387), 265268 (1998).
http://dx.doi.org/10.1126/science.282.5387.265
40.
40. RO-H increases from 1.000 Å to 1.005 Å after the water molecule is absorbed by the superatom.
41.
41. E. Vöhringer-Martinez, B. Hansmann, H. Hernandez, J. S. Francisco, J. Troe and B. Abel, Science 315 (5811), 497501 (2007).
http://dx.doi.org/10.1126/science.1134494
42.
42. R. S. Mulliken, Journal of Chemical Physics 23 (10), 18331840 (1955).
http://dx.doi.org/10.1063/1.1740588
43.
43. P. L. Geissler, C. Dellago, D. Chandler, J. Hutter and M. Parrinello, Science 291 (5511), 21212124 (2001).
http://dx.doi.org/10.1126/science.1056991
44.
44. The initial and final states are obtained by the conjugate-gradient method with the energy tolerance of 0.001 eV except for the final state, for which the energy tolerance is 0.002 eV because it is not a stable minimum.
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3664751
Loading
/content/aip/journal/adva/1/4/10.1063/1.3664751
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3664751
2011-11-15
2016-12-06

Abstract

Reaction of aluminum clusters, Al n (n = 16, 17 and 18), with liquid water is investigated using quantum molecular dynamics simulations, which show rapid production of hydrogen molecules assisted by proton transfer along a chain of hydrogen bonds(H-bonds) between water molecules, i.e. Grotthuss mechanism. The simulation results provide answers to two unsolved questions: (1) What is the role of a solvation shell formed by non-reacting H-bonds surrounding the H-bond chain; and (2) whether the high size-selectivity observed in gas-phase Al n -water reaction persists in liquid phase? First, the solvation shell is found to play a crucial role in facilitating proton transfer and hence H2 production. Namely, it greatly modifies the energy barrier, generally to much lower values (< 0.1 eV). Second, we find that H2 production by Al n in liquid water does not depend strongly on the cluster size, in contrast to the existence of magic numbers in gas-phase reaction. This paper elucidates atomistic mechanisms underlying these observations.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3664751.html;jsessionid=mk0tEGDtJhKIxy-TmBqWniOB.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3664751&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3664751&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3664751'
Right1,Right2,Right3,