Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3665682
1.
1. H. A. Atwater and A. Polman, Nat. Mater. 9, 205 (2010).
http://dx.doi.org/10.1038/nmat2629
2.
2. K. R. Catchpole and A. Polman, Opt. Express 16, 21793 (2008).
http://dx.doi.org/10.1364/OE.16.021793
3.
3. B. P. Rand, P. Peumans, and S. R. Forrest, J. Appl. Phys. 96, 7519 (2004).
http://dx.doi.org/10.1063/1.1812589
4.
4. W. Liu, X. Wang, Y. Li, Z. Geng, F. Yang and J. Li, Sol. Energy Mater. Sol. Cells 95, 693 (2011).
http://dx.doi.org/10.1016/j.solmat.2010.10.004
5.
5. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
6.
6. D. Stroud and F. P. Pan, Phys. Rev. B 17, 1602 (1978).
http://dx.doi.org/10.1103/PhysRevB.17.1602
7.
7. J. Y. Lee and P. Peumans, Opt. Express 18, 10078 (2010).
http://dx.doi.org/10.1364/OE.18.010078
8.
8. J. D. Jackson, Classical Electrodynamics, 3rd ed., (Wiley, New York, 1998).
9.
9. D. R. Smith and J. B. Pendry, J. Opt. Soc. Am. B 23, 391 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000391
10.
10. F. W. de Wette and G. E. Schacher, Phys. Rev. 137, A78 (1965).
http://dx.doi.org/10.1103/PhysRev.137.A78
11.
11. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., (Butterworth-Heinemann, 1984).
12.
12. D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.195104
13.
13. A. Centeno, J. Breeze, B. Ahmed, H. Reehal, and N. Alford, Opt. Lett. 35, 76 (2010).
http://dx.doi.org/10.1364/OL.35.000076
14.
14. S. H. Lim, W. Mar, P. Matheu, D. Derkacs, and E. T. Yu, J. Appl. Phys. 101, 104309 (2007).
http://dx.doi.org/10.1063/1.2733649
15.
15. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, Appl. Phys. Lett. 92, 053110 (2008).
http://dx.doi.org/10.1063/1.2840676
16.
16. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, J. Appl. Phys. 101, 093105 (2007).
http://dx.doi.org/10.1063/1.2734885
17.
17. K. Nakayama, K. Tanabe, and H. A. Atwater, Appl. Phys. Lett. 93, 121904 (2008).
http://dx.doi.org/10.1063/1.2988288
18.
18. Yu. A. Akimov, K. Ostrikov, and E. P. Li, Plasmonics 4, 107 (2009).
http://dx.doi.org/10.1007/s11468-009-9080-8
19.
19. D. Wan, H. L. Chen, T. C. Tseng, C. Y. Fang, Y. S. Lai, and F. Y. Yeh, Adv. Funct. Mater. 20, 3064 (2010).
http://dx.doi.org/10.1002/adfm.201000678
20.
20. J. Zhao and M. A. Green, IEEE Trans. Electr. Dev. 38, 1925 (1991).
http://dx.doi.org/10.1109/16.119035
21.
21. Yu. A. Akimov, W. S. Koh, S. Y. Sian, and S. Ren, Appl. Phys. Lett. 96, 073111 (2010).
http://dx.doi.org/10.1063/1.3315942
22.
22. D. E. Aspnes, Am. J. Phys. 50, 704 (1982).
http://dx.doi.org/10.1119/1.12734
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3665682
Loading
/content/aip/journal/adva/1/4/10.1063/1.3665682
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3665682
2011-11-21
2016-12-03

Abstract

We examined numerically the contribution of contrasting characteristics of metal nanoparticles, strong polarization and metallic loss, to the total efficiency of photovoltaic cells. A layer of nanoparticle array was chosen as a model. We found that depending on the location of the layer in the cell, the metallic loss offsets the enhanced photoabsorption due to the strong near field. A general procedure to reduce a nanoparticle layer into a sheet of effective continuous medium is presented, which greatly facilitates the quantitative analysis.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3665682.html;jsessionid=rhdiKpyVnPV5vYt6RFbb7MQc.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3665682&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3665682&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3665682'
Right1,Right2,Right3,