Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. R. Waser and M. Aono, Nat. Mater. 6, 833 (2007).
2. H. Akinaga and H. Shima, Proc. IEEE 98, 2237 (2010).
3. A. Sawa, Mater. Today 11, 28 (2008).
4. J. S. Lee, S. B. Lee, S. H. Chang, L. G. Gao, B. S. Kang, M. J. Lee, C. J. Kim, T. W. Noh, and B. Kahng, Phys. Rev. Lett. 105, 205701 (2010).
5. K. M. Kim, B. J. Choi, and C. S. Hwang, Appl. Phys. Lett. 90, 242906 (2007).
6. G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, Appl. Phys. Lett. 91, 222103 (2007).
7. D. H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X. S. Li, G. S. Park, B. Lee, S. Han, M. Kim, and C. S. Hwang, Nat. Nanotechnol. 5, 148 (2010).
8. M. Quintero, P. Levy, A. G. Leyva, and M. J. Rozenberg, Phys. Rev. Lett. 98, 116601 (2007).
9. M. J. Rozenberg, M. J. Sanchez, R. Weht, C. Acha, F. Gomez-Marlasca, and P. Levy, Phys. Rev. B 81, 115101 (2010).
10. J. H. Hur, M. J. Lee, C. B. Lee, Y. B. Kim, and C. J. Kim, Phys. Rev. B 82, 155321 (2010).
11. Y. S. Chen, G. J. Lian, G. C. Xiong, and T. Venkatesan, Appl. Phys. Lett. 98, 232513 (2011).
12. Y. S. Chen, L. P. Chen, G. J. Lian, and G. C. Xiong, J. Appl. Phys. 106, 023708 (2009).
13. D. M. Ramo, A. L. Shluger, J. L. Gavartin, and G. Bersuker, Phys. Rev. Lett. 99, 155504 (2007).
14. Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
15. J. Inoue and S. Maekawa, Phys. Rev. B 53, 11927 (1996).
16. R. Brucas, M. Hanson, P. Apell, P. Nordblad, R. Gunnarsson, and B. Hjorvarsson, Phys. Rev. B 81, 224437 (2010).
17. H. Yang, S.-H. Yang, and S. S. P. Parkin, Nano Lett. 8, 340 (2008).
18. S. H. Chang, J. S. Lee, S. C. Chae, S. B. Lee, C. Liu, B. Kahng, D. W. Kim, and T. W. Noh, Phys. Rev. Lett. 102, 026801 (2009).
19. C. Gould, A. Slobodskyy, D. Supp, T. Slobodskyy, P. Grabs, P. Hawrylak, F. Qu, G. Schmidt, and L. W. Molenkamp, Phys. Rev. Lett. 97, 017202 (2006).
20. D. G. Austing, S. Tarucha, P. C. Main, M. Henini, S. T. Stoddart, and L. Eaves, Appl. Phys. Lett. 75, 671 (1999).
21. S. Das, S. Majumdar, and S. Giri, J. Phys. Chem. C 114, 6671 (2010).

Data & Media loading...


Article metrics loading...



We propose a theoretical model of magnetic field dependence of hysteretic switching in magnetic granular system. The model is based on the self-trapped electrons mechanism. Our calculations show that the switching voltage may be significantly decreased with increasing the magnetic field. The underlying mechanism is the influence of the magnetic field on electron occupation of the conduction band, which depends on the materials used in magnetic granular system, concentration of magnetic granules in the insulating matrix, applied voltage, and the charge accumulation on the granules. We support our theoretical calculations by measuring the magnetic field dependence of resistive switching behaviour in Co/Al2O3 granular multilayers. Our experimental results are in qualitative agreement with the proposed theory.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd