1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Deviation from time-composition equivalence in polymer solutions with selective cosolvents
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3666980
1.
1. J. D. Ferry, Viscoelastic Properties of Polymers, 3rd Ed. (Wiley, New York, 1980).
2.
2. V. K. Daga and N. J. Wagner, Rheol. Acta, 45, 813 (2006).
http://dx.doi.org/10.1007/s00397-005-0059-x
3.
3. J. I. Escalante, E. R. Macias, F. Bautista, J. H. Perez-Lopez, P. C. Schulz, M. Gradzielski, O. Manero and J. E. Puig, Soft Matter, 7, 2094 (2011).
http://dx.doi.org/10.1039/c0sm00739k
4.
4. P. Cicuta, E. J. Stancik and G. G. Fuller, Phys. Rev. Lett., 90, 236101 (2003).
http://dx.doi.org/10.1103/PhysRevLett.90.236101
5.
5. E. Spruijt, J. Sprakel, M. Lemmers, M. A. C. Stuart and J. van der Gucht, Phys. Rev. Lett., 105, 208301 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.208301
6.
6. C. Cramer, S. De and M. Schoenhoff, Phys. Rev. Lett., 107, 028301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.107.028301
7.
7. A. S. Krishnan, S. Seifert, B. Lee, S. A. Khan and R. J. Spontak, Soft Matter, 6, 4331 (2010).
http://dx.doi.org/10.1039/c0sm00573h
8.
8. G. Tarjus, in Dynamical Heterogeneities in Glasses, Colloids and Granular Materials, edited by L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, and W. van Saarloos (Oxford University Press, Oxford, 2011), pp. 3967.
9.
9. N. Ramesh, P. K. Davis, J. M. Zielinski, R. P. Danner and J. L. Duda, J. Polym. Sci. B: Polym. Phys., 49, 1629 (2011).
http://dx.doi.org/10.1002/polb.22366
10.
10. I. W. Hamley, The Physics of Block Copolymers. (Oxford University Press, New York, 1998).
11.
11. J. A. Hubbell, S. N. Thomas and M. A. Swartz, Nature, 462, 449 (2009).
http://dx.doi.org/10.1038/nature08604
12.
12. R. Shankar, A. K. Krishnan, T. K. Ghosh and R. J. Spontak, Macromolecules 41, 6100 (2008).
http://dx.doi.org/10.1021/ma071903g
13.
13. T. P. Lodge, B. Pudil and K. J. Hanley, Macromolecules, 35, 4707 (2002).
http://dx.doi.org/10.1021/ma0200975
14.
14. R. J. Spontak and N. P. Patel, in Developments in Block Copolymer Science and Technology, edited by I. W. Hamley (Wiley, New York, 2004), pp. 159212.
15.
15. B. J. Kim, J. J. Chiu, G. R. Yi, D. J. Pine and E. J. Kramer, Adv. Mater., 17, 2618 (2005).
http://dx.doi.org/10.1002/adma.200500502
16.
16. M. W. Hamersky, S. D. Smith, A. O. Gozen and R. J. Spontak, Phys. Rev. Lett., 95, 168306 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.168306
17.
17. A. S. Krishnan, K. E. Roskov and R. J. Spontak, in Advanced Nanomaterials, edited by K. E. Geckeler and H. Nishide (Wiley-VCH, Weinheim, 2010), pp. 791834.
18.
18. A. S. Krishnan, J. H. van Zanten, S. Seifert, B. Lee and R. J. Spontak, Appl. Phys. Lett., 99, 101908 (2011).
http://dx.doi.org/10.1063/1.3635780
19.
19. A. Roos and C. Creton, Macromolecules, 38, 7807 (2005).
http://dx.doi.org/10.1021/ma050322t
20.
20. T. Sato, H. Watanabe and K. Osaki, Macromolecules, 29, 6231 (1996).
http://dx.doi.org/10.1021/ma960060i
21.
21. D. J. Plazek, J. Rheol., 40, 987 (1996).
http://dx.doi.org/10.1122/1.550776
22.
22. K. L. Ngai and D. J. Plazek, Rubber Chem. Technol., 68, 376 (1995).
http://dx.doi.org/10.5254/1.3538749
23.
23. D. A. Vega, J. M. Sebastian, Y. L. Loo and R. A. Register, J. Polym. Sci. B: Polym. Phys., 39, 2183 (2001).
http://dx.doi.org/10.1002/polb.1192
24.
24. H. Yokoyama and E. J. Kramer, Macromolecules, 33, 954 (2000).
http://dx.doi.org/10.1021/ma991202m
25.
25. S. H. Choi, T. P. Lodge and F. S. Bates, Phys. Rev. Lett., 104, 047802 (2010).
http://dx.doi.org/10.1103/PhysRevLett.104.047802
26.
26. Y. He and T. P. Lodge, Macromolecules, 41, 167 (2008).
http://dx.doi.org/10.1021/ma702014z
27.
27. A. S. Krishnan and R. J. Spontak, Soft Matter (in press).
28.
28. S. H. Choi, F. S. Bates and T. P. Lodge, Macromolecules, 44, 3594 (2011).
http://dx.doi.org/10.1021/ma102788v
29.
29. R. Lund, L. Willner, V. Pipich, I. Grillo, P. Lindner, J. Colmenero and D. Richter, Macromolecules, 44, 6145 (2011).
http://dx.doi.org/10.1021/ma200532r
30.
30. A. Halperin, Macromolecules, 44, 5073 (2011).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3666980
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

tCS master curves generated by shifting isothermal ω spectra for cosolvated (co)polymers possessing different molecular architectures: (a) SEPS, (b) SEP and (c) EP. Datasets for moduli (G, circles; G, triangles) varying in wR alternate between open and filled.

Image of FIG. 2.

Click to view

FIG. 2.

tCS master curves produced by shifting isothermal ω spectra for a cosolvated SEBS copolymer. The symbols follow the convention introduced in Fig. 1. The arrowhead identifies the minimum in one of the G upturns at low ω.

Image of FIG. 3.

Click to view

FIG. 3.

Composition-dependent relaxation times derived from the minima in G at low ω in Fig. 2 (⚪), as well as in master curves generated for two other SEBS copolymers investigated at 25°C: (⚫) MS = 10.8 kDa, MEB = 50.4 kDa and (Δ) MS = 8.4 kDa, MEB = 39.2 kDa. The solid lines are exponential fits to the data.

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3666980
2011-11-28
2014-04-19

Abstract

Time-composition superpositioning (tCS) permits determination of the mechanical properties of polymeric materials over a widely extended time (or frequency) domain by systematically varying composition under isothermal conditions. We have recently reported (Soft Matter, 6, 4331, 2010) the existence of such equivalence in technologically relevant triblock copolymers swollen with miscible, midblock-selective cosolvents differing in chemical constitution and viscosity. In this study, chemically homologous homopolymer and copolymer systems exhibiting rheological properties that deviate from tCS are investigated. With regard to the particular case of selectively solvated triblock copolymers, the source of deviation is explained in the context of endblock hopping.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3666980.html;jsessionid=16vjvmr5o7fxt.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3666980&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Deviation from time-composition equivalence in polymer solutions with selective cosolvents
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3666980
10.1063/1.3666980
SEARCH_EXPAND_ITEM