1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
A sequential two-step near-infrared quantum splitting in Ho3+ singly doped NaYF4
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3666981
1.
1. R. T. Wegh, H. Donker, K. D. Oskam, and A. Meijerink, Science 282, 663 (1999).
http://dx.doi.org/10.1126/science.283.5402.663
2.
2. J. L. Sommerdijk, A. Bril, and A. W. de Jager, J. Lumin. 8, 341 (1974).
http://dx.doi.org/10.1016/0022-2313(74)90006-4
3.
3. W. W. Piper, J. A. de Luca, and F. D. Ham, J. Lumin. 8, 344 (1974).
http://dx.doi.org/10.1016/0022-2313(74)90007-6
4.
4. S. Ye, F. Xiao, Y. X. Pan, Y. Y. Ma, and Q. Y. Zhang, Mater. Sci. Eng. R 71, 1 (2010).
http://dx.doi.org/10.1016/j.mser.2010.07.001
5.
5. Z. Tian, H. Liang, B. Han, Q. Su, Y. Tao, G. Zhang, and Y. Fu, J. Phys. Chem. C 112, 12524 (2008).
http://dx.doi.org/10.1021/jp802975g
6.
6. W. Jia, Y. Zhou, S. P. Feofilov, R. S. Meltzer, J. Y. Jeong and D. Keszler, Phys. Rev. B 72, 075114 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.075114
7.
7. N. Kodama and S. Oishi, J. Appl. Phys. 98, 103515 (2005).
http://dx.doi.org/10.1063/1.2135893
8.
8. E. van der Kolk, P. Dorenbos, K. Krämer, D. Biner, and H. U. Güdel, Phys. Rev. B 77, 125110 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125110
9.
9. T. J. Lee, L. Y. Luo, B. M. Cheng, W. G. Diau, and T. M. Chen, Appl. Phys. Lett. 92, 081106 (2008).
http://dx.doi.org/10.1063/1.2884690
10.
10. Q. Y. Zhang and X. Y. Huang, Prog. Mater. Sci. 55, 353 (2010).
http://dx.doi.org/10.1016/j.pmatsci.2009.10.001
11.
11. P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. Den Hertog, J. P. J. M. van der Eerden, and A. Meijerink, Phys. Rev. B 71, 014119 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014119
12.
12. X. Y. Huang, D. C. Yu, and Q. Y. Zhang, J. Appl. Phys. 106, 113521 (2009).
http://dx.doi.org/10.1063/1.3267484
13.
13. S. Ye, B. Zhu, J. Luo, J. X. Chen, G. Lakshminarayana, and J. R. Qiu, Opt. Express 16, 8989 (2008).
http://dx.doi.org/10.1364/OE.16.008989
14.
14. Y. Wang, L. Xie, and H. Zhang, J. Appl. Phys. 105, 023528 (2009).
http://dx.doi.org/10.1063/1.3056382
15.
15. B. M. van der Ende, L. Aarts, and A. Meijerink, Adv. Mater. 21, 3073 (2009).
http://dx.doi.org/10.1002/adma.200802220
16.
16. L. Aarts, B. M. van der Ende, and A. Meijerink, J. Appl. Phys. 106, 023522 (2009).
http://dx.doi.org/10.1063/1.3177257
17.
17. J. M. Meijer, L. Aarts, B. M. van der Ende, T. J. H. Vlugt, and A. Meijerink, Phys. Rev. B 81, 035107 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.035107
18.
18. H. Lin, D. Q. Chen, Y. L. Yu, A. P. Yang, and Y. S. Wang, Opt. Lett. 36, 876 (2011).
http://dx.doi.org/10.1364/OL.36.000876
19.
19. D. C. Yu, S. Ye, M. Y. Peng, Q. Y. Zhang, J. R. Qiu, J. Wang, and L. Wondraczek, Sol. Energy Mater. Sol. Cells 95, 1590 (2011).
http://dx.doi.org/10.1016/j.solmat.2011.01.004
20.
20. D. C. Yu, X. Y. Huang, S. Ye, M. Y. Peng, Q. Y. Zhang, and L. Wondraczek, Appl. Phys. Lett. 99, 161904 (2011).
http://dx.doi.org/10.1063/1.3652916
21.
21. B. S. Richards, Sol. Energy Mater. Sol. Cells 90, 1189 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.07.001
22.
22. T. Trupke, M. A. Green, and P. Würfel, J. Appl. Phys. 92, 1668 (2002).
http://dx.doi.org/10.1063/1.1492021
23.
23. G. Y. Chen, H. C. Liu, G. Somesfalean, H. J. Liang, and Z. G. Zhang, Nanotechnology 20, 385704 (2009).
http://dx.doi.org/10.1088/0957-4484/20/38/385704
24.
24. B. M. Walsh, N. P. Barnes, and B. Di Bartolo, J. Appl. Phys. 83, 2772 (1998).
http://dx.doi.org/10.1063/1.367037
25.
25. D. Knowles, A. Cassanho, and H. P. Jenssen, Tunable Solid State Laser 139,(1989). in Tunable Solid State Laser, L. D. Buggor, L. Esterowitz, and L. G. DeShazer, Eds. Berlin, Germany: Springer Verlag, 1989, pp. 139145.
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3666981
Loading
/content/aip/journal/adva/1/4/10.1063/1.3666981
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3666981
2011-11-29
2014-08-23

Abstract

We demonstrated an efficient sequential two-step near-infrared (NIR) quantum splitting (QS) in a Ho3+ singly dopedβ-NaYF4. An incident high-energy ultraviolet (UV)-to-visible photon in the wavelength range of 300−560 nm, which enables the Ho3+:5F4,5S2 states excited, could be efficiently split into two NIR photons at 1015 and 1180 nm. Underlying mechanisms for the sequential two-step NIR-QS process are analyzed in terms of the diffuse reflection spectrum, static and dynamic photoemissionspectra and monitored excitation spectra. Internal quantum yield is obtained up to 110% on the basis of experimental and theoretical calculation results.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3666981.html;jsessionid=9c32zmutqeyq.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3666981&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: A sequential two-step near-infrared quantum splitting in Ho3+ singly doped NaYF4
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3666981
10.1063/1.3666981
SEARCH_EXPAND_ITEM