Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3668286
1.
1. K. Krishen, Acta Astronautica 64 (11-12), 11601166 (2009).
http://dx.doi.org/10.1016/j.actaastro.2009.01.008
2.
2. Y. Bar-Cohen, Proc. SPIE 6524, 652403 (2007).
http://dx.doi.org/10.1117/12.716431
3.
3. M. Shahinpoor and K. J. Kim, Smart Materials and Structures 14 (1), 197214 (2005).
http://dx.doi.org/10.1088/0964-1726/14/1/020
4.
4. M. Aureli, C. Prince, M. Porfiri and S. D. Peterson, Smart Materials and Structures 19 (1), 115 (2010).
http://dx.doi.org/10.1088/0964-1726/19/1/015003
5.
5. J. Y. Li and S. Nemat-Nasser, Mechanics of Materials 32 (5), 303314 (2000).
http://dx.doi.org/10.1016/S0167-6636(00)00002-8
6.
6. M. Shahinpoor, in IEEE Int. Conf. on Robotics and Automation (1993), Vol. 2, pp. 380385.
7.
7. M. Shahinpoor and K. J. Kim, Smart Materials & Structures 13 (6), 13621388 (2004).
http://dx.doi.org/10.1088/0964-1726/13/6/009
8.
8. P. G. d. Gennes, K. Okumura, M. Shahinpoor and K. J. Kim, Europhysics Letters 50 (4), 513518 (2000).
http://dx.doi.org/10.1209/epl/i2000-00299-3
9.
9. S. Tadokoro, S. Yamagami, T. Takamori and K. Oguro, Proc. SPIE 3987, 92102 (2000).
http://dx.doi.org/10.1117/12.387767
10.
10. S. Nernat-Nasser and L. Jiang Yu, Journal of Applied Physics 87 (7), 33213331 (2000).
http://dx.doi.org/10.1063/1.372343
11.
11. K. Asaka and K. Oguro, Journal of Electroanalytical Chemistry 480 (1-2), 186198 (2000).
http://dx.doi.org/10.1016/S0022-0728(99)00458-1
12.
12. M. Shahinpoor, Electrochimica Acta 48 (14-16), 23432353 (2003).
http://dx.doi.org/10.1016/S0013-4686(03)00224-X
13.
13. J. W. Paquette, K. J. Kim and D. Kim, Sensors and Actuators A: Physical 118 (1), 135143 (2005).
http://dx.doi.org/10.1016/S0924-4247(04)00541-2
14.
14. K. M. Newbury and D. J. Leo, Journal of Intelligent Material Systems and Structures 13 (1), 5160 (2002).
http://dx.doi.org/10.1177/1045389X02013001978
15.
15. J. D. McGee, Dissertation, University of California, 2002.
16.
16. B. Auclair, V. Nikonenko, C. Larchet, M. Métayer and L. Dammak, Journal of Membrane Science 195 (1), 89102 (2002).
http://dx.doi.org/10.1016/S0376-7388(01)00556-7
17.
17. M. Mulder, Basic Principles of Membrane Technology, Second Edition ed. (Kluwer Academic Publishers 1996).
18.
18. Y. Toi and S. S. Kang, Computers & Structures 83 (31-32), 25732583 (2005).
http://dx.doi.org/10.1016/j.compstruc.2005.05.003
19.
19. Y. Gong, C.-y. Tang, C.-p. Tsui and J. Fan, International Journal of Mechanical Sciences 51, 741751 (2009).
http://dx.doi.org/10.1016/j.ijmecsci.2009.07.006
20.
20. P. J. C. Branco and J. A. Dente, Smart Materials and Structures 15 (2), 378392 (2006).
http://dx.doi.org/10.1088/0964-1726/15/2/019
21.
21. H. M. Tatsuya Yamaue, Kinji Asaka, Masao Doi, Macromolecules 38 (4), 13491356 (2005).
http://dx.doi.org/10.1021/ma047944j
22.
22. S. Nemat-Nasser, Journal of Applied Physics 92 (5), 28992915 (2002).
http://dx.doi.org/10.1063/1.1495888
23.
23. K. Farinholt and D. J. Leo, Mechanics of Materials 36 (5-6), 421433 (2004).
http://dx.doi.org/10.1016/S0167-6636(03)00069-3
24.
24. K. M. Farinholt and D. J. Leo, Journal of Applied Physics 104, 014512 (2008).
http://dx.doi.org/10.1063/1.2952974
25.
25. Z. Chen, X. B. Tan, A. Will and C. Ziel, Smart Materials and Structures 16, 14771488 (2007).
http://dx.doi.org/10.1088/0964-1726/16/4/063
26.
26. Z. Chen, D. R. Hedgepeth and X. B. Tan, Smart Materials and Structures 18, 055008 (2009).
http://dx.doi.org/10.1088/0964-1726/18/5/055008
27.
27. J. Choonghee, H. E. Naguib and R. H. Kwon, Smart Materials and Structures 17, 065022 (2008).
http://dx.doi.org/10.1088/0964-1726/17/6/065022
28.
28. T. Johnson and F. Amirouche, Microsystem Technologies 14 (6), 871879 (2008).
http://dx.doi.org/10.1007/s00542-008-0603-6
29.
29. D. Pugal, K. J. Kim, A. Punning, H. Kasema uml gi, M. Kruusmaa and A. Aabloo, Journal of Applied Physics 103, 084908 (2008).
http://dx.doi.org/10.1063/1.2903478
30.
30. S. Nemat-Nasser and S. Zamani, Journal of Applied Physics 100, 064310 (2006).
http://dx.doi.org/10.1063/1.2221505
31.
31. M. Porfiri, Journal of Applied Physics 104, 104915 (2008).
http://dx.doi.org/10.1063/1.3017467
32.
32. M. Aureli, L. Weiyang and M. Porfiri, Journal of Applied Physics 105, 104911 (2009).
http://dx.doi.org/10.1063/1.3129503
33.
33. T. Wallmersperger, D. J. Leo and C. S. Kothera, Journal of Applied Physics 101, 024912 (2007).
http://dx.doi.org/10.1063/1.2409362
34.
34. L. Zhang and Y. W. Yang, Smart Materials and Structures 16, S197S206 (2007).
http://dx.doi.org/10.1088/0964-1726/16/2/S01
35.
35. E. T. Enikov and G. S. Seo, Sensors and Actuators A: Physical 122 (2), 264272 (2005).
http://dx.doi.org/10.1016/j.sna.2005.02.042
36.
36. E. A. Mason and L. A. Viehland, Journal of Chemical Physics 68 (8), 35623573 (1977).
http://dx.doi.org/10.1063/1.436213
37.
37. E. Shoji and D. Hirayama, The Journal of Physical Chemistry B 111 (41), 1191511920 (2007).
http://dx.doi.org/10.1021/jp074611q
38.
38. K. J. Kim, M. Shahinpoor and A. Razani, Proc. SPIE 3987, 311320 (2000).
http://dx.doi.org/10.1117/12.387790
39.
39. R. O’Hayre, S.-W. Cha, W. Colella and F. B. Prinz, Fuel cell fundamentals. (John Wiley & Sons, Inc., 2006).
40.
40. H. Strathmann, Ion-exchange Membrane Separation Processes. (Elsevier, 2004).
41.
41. A. Goswami, A. Acharya and A. K. Pandey, The Journal of Physical Chemistry B 105 (38), 91969201 (2001).
http://dx.doi.org/10.1021/jp010529y
42.
42. I. A. Stenina, P. Sistat, A. I. Rebrov, G. Pourcelly and A. B. Yaroslavtsev, Desalination 170 (1), 4957 (2004).
http://dx.doi.org/10.1016/j.desal.2004.02.092
43.
43. L. Naji, J. A. Chudek and R. T. Baker, Journal of Physical Chemistry B 112 (32), 97619768 (2008).
http://dx.doi.org/10.1021/jp803792c
44.
44. G. Suresh, A. K. Pandey and A. Goswami, Journal of Membrane Science 284 (1-2), 193197 (2006).
http://dx.doi.org/10.1016/j.memsci.2006.07.031
45.
45. Q. Zhao, P. Majsztrik and J. Benziger, The Journal of Physical Chemistry B 115 (12), 27172727 (2011).
http://dx.doi.org/10.1021/jp1112125
46.
46. G. Xie and T. Okada, Electrochimica Acta 41 (9), 15691571 (1996).
http://dx.doi.org/10.1016/0013-4686(95)00391-6
47.
47. T. Okada, G. Xie, O. Gorseth, S. Kjelstrup, N. Nakamura and T. Arimura, Electrochimica Acta 43 (24), 37413747 (1998).
http://dx.doi.org/10.1016/S0013-4686(98)00132-7
48.
48. C. E. Evans, R. D. Noble, S. Nazeri-Thompson, B. Nazeri and C. A. Koval, Journal of Membrane Science 279 (1-2), 521528 (2006).
http://dx.doi.org/10.1016/j.memsci.2005.12.046
49.
49. K. Salehpoor, M. Shahinpoor and A. Razani, SPIE Smart Structures and Materials 1998 3330, 5058 (1998).
50.
50. T. Okada, H. Satou, M. Okuno and M. Yuasa, The Journal of Physical Chemistry B 106 (6), 12671273 (2002).
http://dx.doi.org/10.1021/jp013195l
51.
51. L. Lianjun, F. Chunhui, F. Yan and Q. Xufeng, Journal of Salt Lake Research 14 (3), 4348 (2006).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3668286
Loading
/content/aip/journal/adva/1/4/10.1063/1.3668286
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3668286
2011-11-30
2016-12-08

Abstract

In the process of electro-mechanical transduction of ionic polymer-metal composites (IPMCs), the transport of ion and water molecule plays an important role. In this paper, the theoretical transport models of IPMCs are critically reviewed, with particular emphasis on the recent developments in the latest decade. The models can be divided into three classes, thermodynamics of irreversible process model, frictional model and Nernst-Planck (NP) equationmodel. To some extent the three models can be transformed into each other, but their differences are also obvious arising from the various mechanisms that considered in different models. The transport of ion and water molecule in IPMCs is compared with that in membrane electrode assembly and electrodialysis membrane to identify and clarify the fundamental transport mechanisms in IPMCs. And an improved transport model is proposed and simplified for numerical analysis. The model considers the convection effect rather than the diffusion as the major transport mechanism, and both the self-diffusion and the electroosmosis drag are accounted for in the water flux equation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3668286.html;jsessionid=XDKE_UDMQYTSLm1AB3BmIydG.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3668286&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3668286&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3668286'
Right1,Right2,Right3,