Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3669403
1.
1. D. Gebauer, A. Völkel, and H. Cölfen, Science 322, 1819 (2008).
http://dx.doi.org/10.1126/science.1164271
2.
2. E. M. Pouget, P. H. H. Bomans, J. A. Goos, P. M. Frederik, G. de With, and N. A. Sommerdijk, Science 323, 1455 (2009).
http://dx.doi.org/10.1126/science.1169434
3.
3. J. Mullin, Crystallization, Butterworth-Heinemann, Oxford, 2001.
4.
4. M. Niederberger and H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006).
http://dx.doi.org/10.1039/b604589h
5.
5. H. Cölfen and S. Mann, Angew. Chem. Int. Ed. 42, 2350 (2003).
http://dx.doi.org/10.1002/anie.200200562
6.
6. H. Cölfen and M. Antonietti, Angew. Chem. Int. Ed. 44, 5576 (2005).
http://dx.doi.org/10.1002/anie.200500496
7.
7. F. C. Meldrum and H. Cölfen, Chem. Rev. 108, 4332 (2008).
http://dx.doi.org/10.1021/cr8002856
8.
8. H. Cölfen and M. Antonietti, Mesocrystals and nonclassical crystallization, John Wiley & Sons, Chichester, 2008.
9.
9. M. Li, H. Schnablegger, and S. Mann, Nature 402, 393 (1999).
http://dx.doi.org/10.1038/46509
10.
10. J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, and R. L. Penn, Science 289, 751 (2000).
http://dx.doi.org/10.1126/science.289.5480.751
11.
11. Z. Tang, N. A. Kotov, and M. Giersig, Science 297, 237 (2002).
http://dx.doi.org/10.1126/science.1072086
12.
12. J. Polleux, N. Pinna, M. Antonietti, and M. Niederberger, Adv. Mater. 16, 436 (2004).
http://dx.doi.org/10.1002/adma.200306251
13.
13. W. Koh, A. C. Bartnik, F. W. Wise, and C. B. Murray, J. Am. Chem. Soc. 132, 3909 (2010).
http://dx.doi.org/10.1021/ja9105682
14.
14. C. Schliehe, B. H. Juarez, M. Pelletier, S. Jander, D. Greshnykh, M. Nagel, A. Meyer, S. Foerster, A. Kornowski, C. Klinke, and H. Weller, Science 329, 550 (2010).
http://dx.doi.org/10.1126/science.1188035
15.
15. E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, A. Beltrán, and J. Andrés, Appl. Phys. Lett. 83, 1566 (2003).
http://dx.doi.org/10.1063/1.1605241
16.
16. H. G. Yang and H. C. Zeng, Angew. Chem. Int. Ed. 43, 5930 (2004).
http://dx.doi.org/10.1002/anie.200461129
17.
17. Z. Zhang, H. Sun, X. Shao, D. Li, H. Yu, and M. Han, Adv. Mater. 17, 42 (2005).
http://dx.doi.org/10.1002/adma.200400401
18.
18. E. M. Pouget, P. H. H. Bomans, A. Dey, P. M. Frederik, G. de With, and N. A. J. M. Sommerdijk, J. Am. Chem. Soc. 132, 11560 (2010).
http://dx.doi.org/10.1021/ja102439r
19.
19. V. M. Yuwono, N. D. Burrows, J. A. Soltis, and R. L. Penn, J. Am. Chem. Soc. 132, 2163 (2010).
http://dx.doi.org/10.1021/ja909769a
20.
20. S. Narayanan, J. Wang, and X. M. Lin, Phys. Rev. Lett. 93, 135503 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.135503
21.
21. W. D. Ristenpart, P. G. Kim, C. Domingues, J. Wan, and H. A. Stone, Phys. Rev. Lett. 99, 234502 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.234502
22.
22. Z. Ulanowski, E. Hesse, P. H. Kaye, A. J. Baran, and R. Chandrasekhar, J. Quant. Spectrosc. Ra. 79-80, 1091 (2003).
http://dx.doi.org/10.1016/S0022-4073(02)00342-4
23.
23. M. J. Krasinski and J. Prywler, J. Cryst. Growth 303, 105 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.10.228
24.
24. Y. Min, M. Akbulut, K. Kristiansen, Y. Golan, and J. Israelachvili, Nat. Mater. 7, 527 (2008).
http://dx.doi.org/10.1038/nmat2206
25.
25. K. J. M. Bishop, C. E. Wilmer, S. Soh, and B. A. Grzybowski, Small 5, 1600 (2009).
http://dx.doi.org/10.1002/smll.200900358
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3669403
Loading
/content/aip/journal/adva/1/4/10.1063/1.3669403
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3669403
2011-11-30
2016-09-27

Abstract

We observed nonclassical crystal growth of the sodium fluorosilicate nanowires, nanoplates, and hierarchical structures through self-assembly and aggregation of primary intermediate nanoparticles. Unlike traditional ion-by-ion crystallization, the primary nanoparticles formed first and their subsequent self-assembly, fusion, and crystallization generated various final crystals. These findings offer direct evidences for the aggregation-based crystallization mechanism.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3669403.html;jsessionid=M8JqzNGCiPpK3-kU7ziNsrxw.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3669403&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3669403&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3669403'
Right1,Right2,Right3,