Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287, 1019 (2000).
2. S. Ramachandran, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 84, 5255 (2004).
3. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 (2003).
4. A. K. Zaheer, and G. Subhasis, Appl. Phys. Lett. 99, 042504 (2011).
5. H. H. Nguyen, J. H. Song, A. T. Raghavender, T. Asaeda, and M. Kurisu. Appl. Phys. Lett. 99, 052505 (2011).
6. H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, and P. Kratzer, Phys. Rev. Lett. 105, 267203 (2010).
7. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London), 430, 630 (2004).
8. C. Wang, M. Y. Ge, and J. Z. Jiang, Appl. Phys. Lett. 97, 042510 (2010).
9. R. P. Panguluri, P. Kharel, C. Sudakar, R. Naik, R. Suryanarayanan, V. M. Naik, A. G. Petukhov, B. Nadgorny, and G. Lawes, Phys. Rev. B 79, 165208 (2009).
10. G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng, and T. Wu, AIP Advances, 1, 022152 (2011).
11. B. M. Maoz, E. Tirosh, M. B. Sadan, and G. Markovich, Phys. Rev. B. 83, 161201R (2011).
12. D. Gao, J. Li, Z. Li, Z. Zhang, J. Zhang, H. Shi, and D. Xue, J. Phys. Chem. C, 114, 11703 (2010).
13. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B. 72, 024450 (2005).
14. H. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia, and J. Li, Phys. Rev. Lett. 102, 017201 (2009).
15. B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Phys. Rev. B. 39, 4343 (1989).
16. A. Filippetti, and V. Fiorentini, Phys. Rev. B. 74, 220401 (2006).
17. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B. 64, 174420 (2001).
18. H. W. Qin, Z. L. Zhang, X. Liu, Y. J. Zhang, J. F. Hu, J. Magn. Magn. Mater., 322, 1994 (2010).
19. D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, and D. Xue, J. Phys. Chem. C, 114, 18347 (2010).
20. S. Lee, Y. Shon, D. Y. Kim, T. W. Kang, and C. S. Yoon, Appl. Phys. Lett. 96, 042115 (2010).
21. X. Wang, G. Xi, S. Xiong, Y. Liu, B. Xi, W. Yu, and Y. Qian, Cryst. Growth Des. 7, 930 (2007).
22. B. Pandey, S. Ghosh, P. Srivastava, P. Kumar, D. Kanjilal, S. Zhou, and H. Schmidt, J. Appl. Phys. 107, 023901 (2010).
23. R. K. Singhal, A. Samariya, S. Kumar, Y. T. Xing, D. C. Jain, S. N. Dolia, U. P. Deshpande, T. Shripathi, and E. B. Saitovitch, J. Appl. Phys. 107, 113916 (2010).
24. R. K. Singhal, P. Kumari, A. Samariya, Sudhish Kumar, S. C. Sharma, Y. T. Xing, and E. B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).
25. R. K. Singhal, S. Kumar, P. Kumari, Y. T. Xing, and E. Saitovitch, Appl. Phys. Lett. 98, 092510 (2011).

Data & Media loading...


Article metrics loading...



In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu 1+-VO) in CuO.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd