Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3670360
1.
1. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science, 287, 1019 (2000).
http://dx.doi.org/10.1126/science.287.5455.1019
2.
2. S. Ramachandran, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 84, 5255 (2004).
http://dx.doi.org/10.1063/1.1764936
3.
3. P. Sharma, A. Gupta, K. V. Rao, F. J. Owens, R. Sharma, R. Ahuja, J. M. O. Guillen, B. Johansson, and G. A. Gehring, Nature Mater. 2, 673 (2003).
http://dx.doi.org/10.1038/nmat984
4.
4. A. K. Zaheer, and G. Subhasis, Appl. Phys. Lett. 99, 042504 (2011).
http://dx.doi.org/10.1063/1.3615714
5.
5. H. H. Nguyen, J. H. Song, A. T. Raghavender, T. Asaeda, and M. Kurisu. Appl. Phys. Lett. 99, 052505 (2011).
http://dx.doi.org/10.1063/1.3617439
6.
6. H. Wu, A. Stroppa, S. Sakong, S. Picozzi, M. Scheffler, and P. Kratzer, Phys. Rev. Lett. 105, 267203 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.267203
7.
7. M. Venkatesan, C. B. Fitzgerald, and J. M. D. Coey, Nature (London), 430, 630 (2004).
http://dx.doi.org/10.1038/430630a
8.
8. C. Wang, M. Y. Ge, and J. Z. Jiang, Appl. Phys. Lett. 97, 042510 (2010).
http://dx.doi.org/10.1063/1.3473764
9.
9. R. P. Panguluri, P. Kharel, C. Sudakar, R. Naik, R. Suryanarayanan, V. M. Naik, A. G. Petukhov, B. Nadgorny, and G. Lawes, Phys. Rev. B 79, 165208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.165208
10.
10. G. Z. Xing, Y. H. Lu, Y. F. Tian, J. B. Yi, C. C. Lim, Y. F. Li, G. P. Li, D. D. Wang, B. Yao, J. Ding, Y. P. Feng, and T. Wu, AIP Advances, 1, 022152 (2011).
http://dx.doi.org/10.1063/1.3609964
11.
11. B. M. Maoz, E. Tirosh, M. B. Sadan, and G. Markovich, Phys. Rev. B. 83, 161201R (2011).
http://dx.doi.org/10.1103/PhysRevB.83.161201
12.
12. D. Gao, J. Li, Z. Li, Z. Zhang, J. Zhang, H. Shi, and D. Xue, J. Phys. Chem. C, 114, 11703 (2010).
http://dx.doi.org/10.1021/jp911957j
13.
13. J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald, and L. S. Dorneles, Phys. Rev. B. 72, 024450 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024450
14.
14. H. Peng, H. J. Xiang, S. H. Wei, S. S. Li, J. B. Xia, and J. Li, Phys. Rev. Lett. 102, 017201 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.017201
15.
15. B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Phys. Rev. B. 39, 4343 (1989).
http://dx.doi.org/10.1103/PhysRevB.39.4343
16.
16. A. Filippetti, and V. Fiorentini, Phys. Rev. B. 74, 220401 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.220401
17.
17. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B. 64, 174420 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.174420
18.
18. H. W. Qin, Z. L. Zhang, X. Liu, Y. J. Zhang, J. F. Hu, J. Magn. Magn. Mater., 322, 1994 (2010).
http://dx.doi.org/10.1016/j.jmmm.2010.01.021
19.
19. D. Gao, G. Yang, J. Li, J. Zhang, J. Zhang, and D. Xue, J. Phys. Chem. C, 114, 18347 (2010).
http://dx.doi.org/10.1021/jp106015t
20.
20. S. Lee, Y. Shon, D. Y. Kim, T. W. Kang, and C. S. Yoon, Appl. Phys. Lett. 96, 042115 (2010).
http://dx.doi.org/10.1063/1.3294635
21.
21. X. Wang, G. Xi, S. Xiong, Y. Liu, B. Xi, W. Yu, and Y. Qian, Cryst. Growth Des. 7, 930 (2007).
http://dx.doi.org/10.1021/cg060798j
22.
22. B. Pandey, S. Ghosh, P. Srivastava, P. Kumar, D. Kanjilal, S. Zhou, and H. Schmidt, J. Appl. Phys. 107, 023901 (2010).
http://dx.doi.org/10.1063/1.3284091
23.
23. R. K. Singhal, A. Samariya, S. Kumar, Y. T. Xing, D. C. Jain, S. N. Dolia, U. P. Deshpande, T. Shripathi, and E. B. Saitovitch, J. Appl. Phys. 107, 113916 (2010).
http://dx.doi.org/10.1063/1.3431396
24.
24. R. K. Singhal, P. Kumari, A. Samariya, Sudhish Kumar, S. C. Sharma, Y. T. Xing, and E. B. Saitovitch, Appl. Phys. Lett. 97, 172503 (2010).
http://dx.doi.org/10.1063/1.3507290
25.
25. R. K. Singhal, S. Kumar, P. Kumari, Y. T. Xing, and E. Saitovitch, Appl. Phys. Lett. 98, 092510 (2011).
http://dx.doi.org/10.1063/1.3562328
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3670360
Loading
/content/aip/journal/adva/1/4/10.1063/1.3670360
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3670360
2011-12-05
2016-09-29

Abstract

In this work, we experimentally demonstrate that it is possible to induce ferromagnetism in CuO by ball milling without any ferromagnetic dopant. The magnetic measurements indicate that paramagnetic CuO is driven to the ferromagnetic state at room temperature by ball milling gradually. The saturation magnetization of the milled powders is found to increase with expanding the milling time and then decrease by annealing under atmosphere. The fitted X-ray photoelectron spectroscopy results indicate that the observed induction and weaken of the ferromagnetism shows close relationship with the valence charged oxygen vacancies (Cu 1+-VO) in CuO.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3670360.html;jsessionid=xK-5J4HAftPzAjv0XxRuWkz4.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3670360&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3670360&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3670360'
Right1,Right2,Right3,