1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3670361
1.
1. N. Lampis, P. Sciau, A. G. Lehmann, J. Phys.:Condens. Matter. 12, 2367, (2000).
http://dx.doi.org/10.1088/0953-8984/12/11/303
2.
2. W. Z. Zhu, A. Kholkin, P. Q. Mantas, J. L. Baptista, J. Eur. Ceram. Soc. 20, 2029 (2000).
http://dx.doi.org/10.1016/S0955-2219(00)00094-7
3.
3. L. I. Shvorneva, Y. N. Venevtsev, Sov. Phys. JETP 22, 722 (1965).
4.
4. S. Nomura, H. Takabayashi, T. Nakagawa. Jpn. J. Appl. Phys. 7, 600 (1968).
http://dx.doi.org/10.1143/JJAP.7.600
5.
5. I. Brixel, J.-P. Rivera, A. Steiner, H. Schmid. Ferroelectrics, 79, 201 (1988).
http://dx.doi.org/10.1080/00150198808229431
6.
6. N. Lampis, C. Franchini, G. Satta, A. Geddo-Lehmann, and S. Massidda, Phys. Rev. B. 69, 064412, (2004).
http://dx.doi.org/10.1103/PhysRevB.69.064412
7.
7. B. Jaffe, R. S. Roth, S. Mazullo, J. Appl. Phys. 25, 809 (1954).
http://dx.doi.org/10.1063/1.1721741
8.
8. B. Noheda, J. A. Gonzalo, L. E. Cross, R. Gou, S. E. Park, D. E. Cox, G. Shirane. Phys. Rev. B. 61, 8687 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.8687
9.
9. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84, (2004).
http://dx.doi.org/10.1038/nature03028
10.
10. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science. 299, 1719 (2003).
http://dx.doi.org/10.1126/science.1080615
11.
11. A. Kumar, G. L. Sharma, R. S. Katiyar, J. F. Scott, R. Pirc, and R. Blinc, J. Phys.: Condens. Matter, 21, 382204, (2009).
http://dx.doi.org/10.1088/0953-8984/21/38/382204
12.
12. J. Cheng, S. Yu, J. Chen, Z. Meng, Appl. Phys. Lett. 89, 122911, (2006).
http://dx.doi.org/10.1063/1.2353806
13.
13. R. Rai, A. L. Kholkin, S. Sharma, J. Alloy compd. 506, 815, (2010).
http://dx.doi.org/10.1016/j.jallcom.2010.07.080
14.
14. R. N. P. Choudhary, D. K. Pradhan, C. M. Tirado, G. E. Bonilla, R. S. Katiyar. J. Appl. Phys. 100, 084105, (2006).
http://dx.doi.org/10.1063/1.2359624
15.
15. Ashok Kumar, I. Rivera, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett, 92, 132913, (2008).
http://dx.doi.org/10.1063/1.2906371
16.
16. B.-J. Fang, C.-L. Ding, W. Liu, L.-Q. Li, L. Tang, Eur. Phys. J. Appl. Phys. 45, 20302, (2009).
http://dx.doi.org/10.1051/epjap/2009004
17.
17. M. Yokosuka, Jpn. J. Appl. Phys., 38, 5488, (1999).
http://dx.doi.org/10.1143/JJAP.38.5488
18.
18. S. P. Singh, A. K. Singh, D. Pandey. Phys. Rev. B., 76, 054102, (2007).
http://dx.doi.org/10.1103/PhysRevB.76.054102
19.
19. A. Kumar, G. L. Sharma, R. S. Katiyar, J. F. Scott, R. Pirc, and R. Blinc, J. Phys.: Condens. Matter, 21, 382204, (2009).
http://dx.doi.org/10.1088/0953-8984/21/38/382204
20.
20. A. Kumar, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett., 94, 212903, (2009).
http://dx.doi.org/10.1063/1.3138781
21.
21. R. Pirc, R. Blinc, and J. F. Scott, Phys. Rev. B, 79, 214114, (2009).
http://dx.doi.org/10.1103/PhysRevB.79.214114
22.
22. A. Kumar, R. S. Katiyar, and J. F. Scott, J. Appl. Phys., 108, 064105, (2010).
http://dx.doi.org/10.1063/1.3481411
23.
23. R. Roque-Malherbe, The Physical Chemistry of Materials: Energy and Environmental Applications, CRC Press, Boca Raton, Florida, (2009).
24.
24. H. Toraya, The Rigaku Journal, 6, 28, (1989).
25.
25. G. S. Pawley, J. Appl. Cryst. 14, 357, (1984).
http://dx.doi.org/10.1107/S0021889881009618
26.
26. S. Takahashi, S. Hirose, K. Uchino, J. Am. Ceram. Soc. 77, 2429, (1994).
http://dx.doi.org/10.1111/j.1151-2916.1994.tb04615.x
27.
27. J. Frantti, V. Lantto, J. Lappalainen. J. Appl. Phys. 79, 1065, (1996).
http://dx.doi.org/10.1063/1.360895
28.
28. J. F. Meng, R. S. katiyar, G. T. Zou, X. H. Wang. Phys. Stat. Sol. (a). 164, 851, (1997).
http://dx.doi.org/10.1002/1521-396X(199712)164:2<851::AID-PSSA851>3.0.CO;2-J
29.
29. M. K. Zhu, P. X. Lu, Y. D. Hou, X. M. Song, H. Wang H. Yan. J. Am. Ceram.Soc. 89, 3739, (2006).
http://dx.doi.org/10.1111/j.1551-2916.2006.01281.x
30.
30. B. Ch Woo, B. K. Kim. Jpn. J. Appl. Phys. 42, 6037, (2003).
http://dx.doi.org/10.1143/JJAP.42.6037
31.
31. R. Martínez, R. Palai, R. Katiyar, R. S. Mater. Res. Soc. Symp. Proc. 1034, 1034k10, (2008).
32.
32. R. S. Katiyar, J. F. Ryan, and J. F. Scott, Phys. Rev. B 4, 2635 (1971).
http://dx.doi.org/10.1103/PhysRevB.4.2635
33.
33. I. G. Siny, S. G. Lushnikov, R. S. Katiyar, and E. A. Rogacheva, Phys. Rev. B 56, 7962 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.7962
34.
34. S-H Lee, H-M Jang, H-H Sung, H. Yi. Appl. Phys. Lett., 81, 2439 (2002).
http://dx.doi.org/10.1063/1.1509859
35.
35. M. Osada, K. Nishida, S. Wada, S. Okamoto, R. Ueno, H. Funakubo, T. Katoda. Appl. Phys. Lett., 87, 232902 (2005).
http://dx.doi.org/10.1063/1.2139844
36.
36. A. Kumar, N. M. Murari, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett. 90, 262907 (2007).
http://dx.doi.org/10.1063/1.2752535
37.
37. W Peng, N. Lemée, J.-L. Dellis, V. V. Shvartsman, P. Borisov, W. Kleemann, Z. Trontelj, J. Holc, M. Kosec, R. Blinc, and M. G. Karkut, Appl. Phys. Lett. 95, 132507 (2009).
http://dx.doi.org/10.1063/1.3242377
38.
38. Dilsom A. Sanchez, A. Kumar, N. Ortega, R. S. Katiyar, and J. F. Scott, Appl. Phys. Lett. 97, 202910 (2010).
http://dx.doi.org/10.1063/1.3519979
39.
39. M. Correa, A. Kumar, R. S. Katiyar, and C. Rinaldi. Appl. Phys. Lett. 93, 192907 (2008).
http://dx.doi.org/10.1063/1.3021394
40.
40. R. Blinc, P. Cevc, A. Zorko, J. Holc, M. Kosec, Z. Trontelj, J. Pirnat, N. Dalal, V. Ramachandran, and J. Krzystek, J. Appl. Phys. 101, 033901 (2007).
http://dx.doi.org/10.1063/1.2432309
41.
41. S. B. Majumder, S. Bhattacharya, R. S. Katiyar, A. Manivannan, P. Dutta, and M. S. Seehra, J. Appl. Phys. 99, 024108 (2006).
http://dx.doi.org/10.1063/1.2158131
42.
42. R. Martinez, R. Palai, H. Huhtinen, J. Liu, J. F. Scott, and R. S. Katiyar, Phys. Rev. B 82, 134104 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.134104
43.
43. W. Kleemann, V. V. Shvartsman, P. Borisov, A. Kania, Phys. Rev. Lett. 105, 257202 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.257202
44.
44. S. Dussan, A. Kumar, J. F. Scott, S. Priya, and R. S. Katiyar, Appl. Phys. Lett. 97, 252902 (2010).
http://dx.doi.org/10.1063/1.3528210
45.
45. D. N. Astrov, Zh. Eksp. Teor. Fiz. 38, 984985;
45.D. N. Astrov, Sov.Phys. JETP 11, 708, (1960).
46.
46. V. J Folen, G. T Rado, & E. W Stalder, Phys. Rev.Lett. 6, 607 (1961).
http://dx.doi.org/10.1103/PhysRevLett.6.607
47.
47. W. F. Brown Jr, R. M. Hornreich, & S. Shtrikman, Phys. Rev. 168, 574 (1968).
http://dx.doi.org/10.1103/PhysRev.168.574
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3670361
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Temperature-dependent x-ray scattering spectra for PZTFT for different compositions: (a) x = 0.4 (40% PFT) and (b) x = 0.3 (30% PFT). (c) Orthorhombic splitting of the ∼45 and 56 degrees peaks of x=0.3 and x=0.4 at 448 K and 423 K respectively.

Image of FIG. 2.

Click to view

FIG. 2.

Raman spectra of PZTFT for different compositions over wide range of temperature (300 - 800K): (a) x = 0.4 and (b) x = 0.3. In both figures the dashed line marks the peaks at about 200 cm-1, 260 cm-1, and 550 cm-1, whose intensities decrease as the temperature increases and almost disappear at T c .

Image of FIG. 3.

Click to view

FIG. 3.

Deconvolution of the Raman spectra of PZTFT x = 0.4 at (a) 300 K, (b) 523 K, and (c) 1123 K.

Image of FIG. 4.

Click to view

FIG. 4.

Temperature variation of lattice parameters (upper case), dielectric permittivity and loss tangent at different frequencies (lower case) of the PZTFT ceramics for different compositions: (a) x = 0.3 and (b) x = 0.4.

Image of FIG. 5.

Click to view

FIG. 5.

Room temperature Polarization (P)- Electric field (E) hysteresis loop of PZTFT ceramics for different compositions: (a) x = 0.4 and (b) x = 0.3.

Image of FIG. 6.

Click to view

FIG. 6.

Temperature variation of the P-E hysteresis loop for PZTFT ceramics with x = 0.3.

Image of FIG. 7.

Click to view

FIG. 7.

Room temperature ferromagnetic hysteresis loop of PZTFT ceramics at different composition: x = 0.4 and x = 0.3, magnetization was scaled for the relative mass of both compositions.

Image of FIG. 8.

Click to view

FIG. 8.

ZFC and FC magnetization of PZTFT (x= 0.30) ceramics at 1 kOe of cooling magnetic field.

Image of FIG. 9.

Click to view

FIG. 9.

Electric control of PZTFT (x= 0.3) magnetization that showed moderate ME coupling comparable to single phase materials. Similar effects was observed in x=0.4 too. Insets show the change in remanent magnetization under external electric field. Right hand side inset shows linear converse ME coupling.

Tables

Generic image for table

Click to view

Table I.

Group theory analysis for symmetries observed in the PZTFT system.

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3670361
2011-12-05
2014-04-24

Abstract

Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr0.53Ti0.47O3) (1-x)- (PbFe0.5Ta0.5O3)x. The present study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C2v-C4v (Pmm2-P4mm) transition. The material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization Pr = 25 μC/cm2, which actually increases (to 40 μC/cm2) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO3. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. These are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3670361.html;jsessionid=5s03trpnmk9ug.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3670361&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: Lead iron tantalate – lead zirconate titanate (PFT/PZT)
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3670361
10.1063/1.3670361
SEARCH_EXPAND_ITEM