Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. E. Zych, C. Brecher, and J. Glodo, J. Phys., Condens Matter 12, 1947 (2000).
2. S. R. Rotman and C. Warde, J. Appl. Phys. 58, 522 (1985).
3. M. A. Dubinskii, K. L. Schepler, V. V. Semashko, R. Yu. Abdulsabirov, S. L. Korableva and A. K. Naumov, Journal Of Modern Optics 45, 221 (1998).
4. F. A. Selim, D. Solodovnikov, M. H. Weber, and K. G. Lynn, Appl. Phys. Letts 91, 104105 (2007).
5. A. Lupei, V. Lupei, C. Gheorghe, A. Ikesue, and M. Enculescu, J. Appl. Phys. 110, 083120 (2011).
6. A. J. Stevenson, B. C. Bittel, C. G. Leh, X. Li, E. C. Dickey, P. M. Lenahan, and G. L. Messing, Appl. Phys. Lett. 98, 051906 (2011).
7. W. Chao, R. Wu, and T. Wu, J. Alloys Compd 506, 98 (2010).
8. Y. Suzuki, T. Sakuma, and M. Hirai, Mater. Sci. Forum 239–241, 219 (1997).
9. K. Blazek, A. Krasnikov, K. Nejezchleb, M. Nikl, T. Savikhina, and S. Zazubovich, phys. stat. sol. (b) 241, 1124 (2004).
10. N. S. Roose and N. A. Anisimov, Trudy Inst. Fiz. Akad. Nauk EstSSR 44, 163 (1975).
11. A. I. Kuznetsov, V. N. Abramov, V. V. Mürk, and B. R. Namozov, Sov. Phys. Solid State 33, 1126 (1991).
12. V. Mürk, A. Kuznetsov, B. Namozov, and K. Ismailov, Nucl. Instrum. Meth. B 91, 327 (1994).
13. V. Mürk and N. Yaroshevich, J. Phys.: Condens. Matter 7, 5857 (1995).
14. V. Mürk, Mater. Sci. Forum 239–241, 537 (1997).
15. M. Kirm, A. Lushchik, Ch. Lushchik, and G. Zimmerer, in: Physics and Chemistry of Luminescence Materials, ed. C. Ronda et al., PV 99-40, The Electrochem. Soc. Proc. Ser. Pennington, NJ, 113 (2000).
16. V. Babin, K. Blazzek, A. Krasnikov, K. Nejezchleb, M. Nilk, T. Savikhina, and S. Zazubovich, Phys. Stat. Sol. C 2, 97 (2005).
17. Bo Liu, Mu Gu, Xiaolin Liu, Shiming Huang, and Chen Ni, Formation energies of antisite defects in Y3Al5O12: A first-principles study, Appl. Phys. Lett. 94, 121910 (2009).
18. S. R. Rotman, C. Warde, H. L. Tuiler, and J. Haggerty, J. Appl. Phys. 66, 3207 (1989).
19. L. Kimai and T. Kushida, Phys. Rev. B 143, 160 (1966).
20. C. R. Varney, D. T. Mackay, S. M. Reda and F. A. Selim, Submitted to J. Phys. D, 2011.
21. C. Y. Chen, G. J. Pogatshnik, Y. Chen, and M. R. Kokta, Phys. Rev. 38, 8555 (1998).

Data & Media loading...


Article metrics loading...



Strong luminescence peaks were observed at 700 and 800 nm in undoped yttrium aluminum garnet (YAG) single crystals. They were attributed to low level of iron impurities as confirmed by Glow Discharge Mass Spectrometry analysis. The 800 nm was only excited by high energy band at 270 nm; the reason behind that was discussed. Photoluminescence measurements revealed a large number of luminescence peaks in all YAG crystals regardless of the growth conditions due to native defects and low-level impurities. These luminescence centers have significant effects on the optical properties of rare-earth doped YAG crystals and their performance in laser and scintillation applications. Excitons released in the lattice may be easily captured by ironions instead of Ce3+ions and the scintillation output is substantially decreased. Nevertheless, Undoped YAG crystals may have the potential to be developed into efficient scintillators.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd