Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3672009
1.
1. S. Mac Lane, Graduate Texts in Mathematics, Springer (1998).
2.
2. S. J. Denny, J. D. Biamonte, D. Jaksch, and S. R. Clark, to appear, Journal of Physics A Mathematical General (2011), arXiv:1108.0888 [quant-ph].
3.
3. S. Al-Assam, S. R. Clark, C. J. Foot, and D. Jaksch, ArXiv e-prints (2011), arXiv:1107.0936 [cond-mat.str-el].
4.
4. S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.2863
5.
5. U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
http://dx.doi.org/10.1103/RevModPhys.77.259
6.
6. M. J. Hartmann, J. Prior, S. R. Clark, and M. B. Plenio, Physical Review Letters 102, 057202 (2009), arXiv:0808.0666.
http://dx.doi.org/10.1103/PhysRevLett.102.057202
7.
7. S. Östlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3537
8.
8. G. Vidal, Phys. Rev. Lett. 91, 147902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.147902
9.
9. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.040502
10.
10. T. Barthel, C. Pineda, and J. Eisert, Phys. Rev. A 80, 042333 (2009), arXiv:0907.3689.
http://dx.doi.org/10.1103/PhysRevA.80.042333
11.
11. R. N.C. Pfeifer, P. Corboz, O. Buerschaper, M. Aguado, M. Troyer, and G. Vidal, Phys. Rev. B 82, 115126 (2010), arXiv:1006.3532.
http://dx.doi.org/10.1103/PhysRevB.82.115126
12.
12. R. König and E. Bilgin, Phys. Rev. B 82, 125118 (2010), arXiv:1006.2478.
http://dx.doi.org/10.1103/PhysRevB.82.125118
13.
13. J. Biamonte, IQC, The University of Waterloo, Waterloo Ontario, Canada (youtube lecture series) (2011), http://www.qubit.org/iqc2011.
14.
14. A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller, Phys. Rev. A 72, 043618 (2005), arXiv:quant-ph/0506256.
http://dx.doi.org/10.1103/PhysRevA.72.043618
15.
15. R. Steinigeweg, S. Langer, F. Heidrich-Meisner, I. P. McCulloch, and W. Brenig, ArXiv e-prints (2010), arXiv:1010.2351 [cond-mat.str-el].
16.
16. S. R. Clark, J. Prior, M. J. Hartmann, D. Jaksch, and M. B. Plenio, New Journal of Physics 12, 025005 (2010), arXiv:0907.5582.
http://dx.doi.org/10.1088/1367-2630/12/2/025005
17.
17. M. Bruderer, A. Klein, S. R. Clark, and D. Jaksch, Phys. Rev. A 76, 011605 (2007).
http://dx.doi.org/10.1103/PhysRevA.76.011605
18.
18. M. Bruderer, T. H. Johnson, S. R. Clark, D. Jaksch, A. Posazhennikova, and W. Belzig, Phys. Rev. A 82, 043617 (2010).
http://dx.doi.org/10.1103/PhysRevA.82.043617
19.
19. J. Schachenmayer, G. Pupillo, and A. J. Daley, New Journal of Physics 12, 025014 (2010).
http://dx.doi.org/10.1088/1367-2630/12/2/025014
20.
20. T. H. Johnson, S. R. Clark, and D. Jaksch, Phys. Rev. E 82, 036702 (2010), arXiv:1006.2639.
http://dx.doi.org/10.1103/PhysRevE.82.036702
21.
21. F. Verstraete, V. Murg, and J. I. Cirac, Advances in Physics 57, 143 (2008).
http://dx.doi.org/10.1080/14789940801912366
22.
22. C. V. Kraus, N. Schuch, F. Verstraete, and J. I. Cirac, Phys. Rev. A 81, 052338 (2010), arXiv:0904.4667.
http://dx.doi.org/10.1103/PhysRevA.81.052338
23.
23. P. Corboz, R. Orús, B. Bauer, and G. Vidal, Phys. Rev. B 81, 165104 (2010), arXiv:0912.0646.
http://dx.doi.org/10.1103/PhysRevB.81.165104
24.
24. G. Vidal, Physical Review Letters 101, 110501 (2008), arXiv:quant-ph/0610099.
http://dx.doi.org/10.1103/PhysRevLett.101.110501
25.
25. G. Vidal, ArXiv e-prints (2009), 0912.1651.
26.
26. P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009), arXiv:0907.3184.
http://dx.doi.org/10.1103/PhysRevB.80.165129
27.
27. P. Corboz, G. Evenbly, F. Verstraete, and G. Vidal, Phys. Rev. A 81, 010303 (2010), arXiv:0904.4151.
http://dx.doi.org/10.1103/PhysRevA.81.010303
28.
28. J. C. Baez and A. Lauda, ArXiv e-prints (2009), arXiv:0908.2469, arXiv:0908.2469 [hep-th].
29.
29. A. Joyal and R. Street, Advances in Mathematics 88 (1991).
30.
30. P. Selinger, ArXiv e-prints (2009), arXiv:0908.3347.
31.
31. Y. Lafont, in Applications of Categories in Computer Science, London Mathematical Society Lecture Note Series, Vol. 177 (Cambridge University Press, 1992) pp. 191201.
32.
32. Y. Lafont, in Term Rewriting, Lecture Notes in Computer Science, Vol. 909 (Springer-Verlag, 1995) pp. 170195.
33.
33. R. Penrose, Combinatorial Mathematics and its Applications, Academic Press (1971).
34.
34. J. C. Baez and M. Stay, ArXiv e-prints (2009), arXiv:0903.0340 [quant-ph].
35.
35. Y. Lafont, Journal of Pure and Applied Algebra 184, 2003 (2003).
http://dx.doi.org/10.1016/S0022-4049(03)00069-0
36.
36. Y. Guiraud, ArXiv Mathematics e-prints (2006), arXiv:math/0612089.
37.
37. C. Brown and G. Hutton, in Proceedings of the 10th Annual IEEE Symposium on Logic in Computer Science (IEEE Computer Society Press, Los Alamitos, California, 1994).
38.
38. M. Aulbach, D. Markham, and M. Murao, New Journal of Physics 12, 073025 (2010), arXiv:1003.5643.
http://dx.doi.org/10.1088/1367-2630/12/7/073025
39.
39. J. I. Cirac and F. Verstraete, J. Phys. A Math. Gen. 42, 4004 (2009).
http://dx.doi.org/10.1088/1751-8113/42/50/504004
40.
40. J. Smith and M. Mosca, ArXiv e-prints (2010), arXiv:1001.0767.
41.
41. I. Wegener, Wiley-Teubner (1987), online at: http://eccc.hpi-web.de/.
42.
42. E. Boros and P. Hammer, Discrete Applied Mathematics 123(1–3), 155 (2002).
http://dx.doi.org/10.1016/S0166-218X(01)00341-9
43.
43. G. Malinowski, Clarendon Press: Oxford University Press (1993), sERIES :Oxford logic guides.
44.
44. A. Kitaev, A. Shen, and M. Vyalyi, AMS, Graduate Studies in Mathematics 47 (2002).
45.
45. M. Nielsen and I. Chuang, Cambridge University Press (2000).
46.
46. L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Reviews of Modern Physics 80, 517 (2008).
http://dx.doi.org/10.1103/RevModPhys.80.517
47.
47. R. B. Griffiths, S. Wu, L. Yu, and S. M. Cohen, Phys. Rev. A 73, 052309 (2006), arXiv:quant-ph/0507215.
http://dx.doi.org/10.1103/PhysRevA.73.052309
48.
48. D. Gross, J. Eisert, N. Schuch, and D. Perez-Garcia, Phys. Rev. A 76, 052315 (2007), arXiv:0706.3401 [quant-ph].
http://dx.doi.org/10.1103/PhysRevA.76.052315
49.
49. L. Lamata, J. León, D. Pérez-García, D. Salgado, and E. Solano, Physical Review Letters 101, 180506 (2008), arXiv:0711.3652.
http://dx.doi.org/10.1103/PhysRevLett.101.180506
50.
50. C. Schön, K. Hammerer, M. M. Wolf, J. I. Cirac, and E. Solano, Phys. Rev. A 75, 032311 (2007), arXiv:quant-ph/0612101.
http://dx.doi.org/10.1103/PhysRevA.75.032311
51.
51. S. Ostlund and S. Rommer, Phys. Rev. Lett. 75, 3537 (1995).
http://dx.doi.org/10.1103/PhysRevLett.75.3537
52.
52. M. Fannes, B. Nachtergaele, and R. F. Werner, Lett. Math. Phys. 25, 249 (1992).
http://dx.doi.org/10.1007/BF00406552
53.
53. F. Verstraete, V. Murg, and J. I. Cirac, Advances in Physics 57, 143 (2008).
http://dx.doi.org/10.1080/14789940801912366
54.
54. G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.220405
55.
55. Y.-Y. Shi, L.-M. Duan, and G. Vidal, Phys. Rev. A 74, 022320 (2006).
http://dx.doi.org/10.1103/PhysRevA.74.022320
56.
56. L. Tagliacozzo, G. Evenbly, and G. Vidal, Phys. Rev. B 80, 235127 (2009), arXiv:0903.5017 [cond-mat.str-el].
http://dx.doi.org/10.1103/PhysRevB.80.235127
57.
57. N. Schuch, M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 100, 040501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.040501
58.
58. F. Mezzacapo, N. Schuch, M. Boninsegni, and J. I. Cirac, New Journal of Physics 11, 083026 (2009), arXiv:0905.3898 [cond-mat.str-el].
http://dx.doi.org/10.1088/1367-2630/11/8/083026
59.
59. H. J. Changlani, J. M. Kinder, C. J. Umrigar, and G. Chan, Phys. Rev. B 80, 245116 (2009), arXiv:0907.4646 [cond-mat.str-el].
http://dx.doi.org/10.1103/PhysRevB.80.245116
60.
60. J. Baez et al., The n-Category Cafe Blog Online at: http://golem.ph.utexas.edu/category/2010/09/bimonoids_from_biproducts.html.
61.
61. S. Abramsky and B. Coecke, Chapter in the Handbook of Quantum Logic and Quantum Structures vol II, Elsevier (2008).
62.
62. P. Selinger, Electronic Notes in Theoretical Computer Science 170, 139 (2007), proceedings of the 3rd International Workshop on Quantum Programming Languages (QPL 2005)
http://dx.doi.org/10.1016/j.entcs.2006.12.018
63.
63. Discrete and switching functions (McGraw-Hill Int. Book Co., 1978).
64.
64. M. Cohn, IRE Transactions of Electronic Computers (1962).
65.
65. A. Mukhopadhyay and G. Schmitz, IEEE Trans. on Computers (1970).
66.
66. V. Bergholm and J. D. Biamonte, Journal of Physics A Mathematical General 44, 245304 (2011), arXiv:1010.4840 [quant-ph].
http://dx.doi.org/10.1088/1751-8113/44/24/245304
67.
67. D. Aharonov, (2003), quant-ph/0301040.
68.
68. J. Kock, Cambridge University Press (2003).
69.
69. P. W. Shor, ArXiv Quantum Physics e-prints (1996), arXiv:quant-ph/9605011.
70.
70. E. Dennis, Phys. Rev. A 63, 052314 (2001).
http://dx.doi.org/10.1103/PhysRevA.63.052314
71.
71. A. Carboni and R. Walters, Journal of Pure and Applied Algebra 49, 11 (1987).
http://dx.doi.org/10.1016/0022-4049(87)90121-6
72.
72. B. Coecke and R. Duncan, aXriv preprint 0906.4725 (2011).
73.
73. C. Kassel, Springer Graduate Texts in Mathematics (1994).
74.
74. S. Abramsky and B. Coecke, Proceedings of the 19th IEEE conference on Logic in Computer Science (LiCS’04) (2004).
75.
75. J. D. Biamonte, Phys. Rev. A 77, 052331 (2008), arXiv:0801.3800 [quant-ph].
http://dx.doi.org/10.1103/PhysRevA.77.052331
76.
76. D. K. Pradhan, IEEE Tr. Computers 27, 239 (1978).
http://dx.doi.org/10.1109/TC.1978.1675077
77.
77. S. Hurst, IEEE Tr. Computers 33, 1160 (1984).
http://dx.doi.org/10.1109/TC.1984.1676392
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3672009
Loading
/content/aip/journal/adva/1/4/10.1063/1.3672009
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3672009
2011-12-12
2016-12-03

Abstract

We examine the use of string diagrams and the mathematics of category theory in the description of quantum states by tensor networks. This approach lead to a unification of several ideas, as well as several results and methods that have not previously appeared in either side of the literature. Our approach enabled the development of a tensor network framework allowing a solution to the quantum decomposition problem which has several appealing features. Specifically, given an -body quantum state |ψ〉, we present a new and general method to factor |ψ〉 into a tensor network of clearly defined building blocks. We use the solution to expose a previously unknown and large class of quantum states which we prove can be sampled efficiently and exactly. This general framework of categorical tensor network states, where a combination of generic and algebraically defined tensors appear, enhances the theory of tensor network states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3672009.html;jsessionid=qKXnOLgM_8A_ZbrSrF1Fk1H8.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3672009&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3672009&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3672009'
Right1,Right2,Right3,