Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3672093
1.
1. R. A. Marcus, and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).
2.
2. J. Deisenhofer, and J. R. Norris, The Photosynthetic Reaction Center (Academic Press Inc., San Diego, 1993), vol. I.
3.
3. H. B. Gray, and J. R. Winkler, Proc. Nat. Acad. Sci. U.S.A. 102, 3534 (2005).
http://dx.doi.org/10.1073/pnas.0408029102
4.
4. D. N. Beratan, J. N. Onuchic, J. R. Winkler, and H. B. Gray, Science 258, 1740 (1992).
http://dx.doi.org/10.1126/science.1334572
5.
5. C. C. Page, C. C. Moser, X. Chen, and P. L. Dutton, Nature 402, 47 (1999).
http://dx.doi.org/10.1038/46972
6.
6. J. F. Smalley, S. W. Feldberg, C. E. D. Chidsey, M. R. Linford, M. D. Newton, and Y.-P. Liu, J. Phys. Chem. 99, 13141 (1995).
http://dx.doi.org/10.1021/j100035a016
7.
7. V. S. Pande, and J. N. Onuchic, Phys. Rev. Lett. 78, 146 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.146
8.
8. J. N. Onuchic, C. Kobayash, O. Miyashita, P. Jennings, and K. K. Baldridge, Phil. Trans. R. Soc. B 361, 1439 (2006).
http://dx.doi.org/10.1098/rstb.2006.1876
9.
9. J. M. Nocek, J. S. Zhou, S. D. Forest, S. Priyadarshy, D. N. Beratan, J. N. Onuchic, and B. M. Hoffman, Chem. Rev. 96, 2459 (1996).
http://dx.doi.org/10.1021/cr9500444
10.
10. M. Alcalde, M. Ferrer, F. J. Plou, and A. Ballesteros, Trends Biotechnol. 24, 281 (2006).
http://dx.doi.org/10.1016/j.tibtech.2006.04.002
11.
11. M. R. Wasielewski, Chem. Rev. 92, 435 (2002).
http://dx.doi.org/10.1021/cr00011a005
12.
12. G. L. Closs, and J. R. Miller, Science 240, 440 (1988).
http://dx.doi.org/10.1126/science.240.4851.440
13.
13. J. R. Winkler, and H. B. Gray, Chem. Rev. 92, 369 (2002).
http://dx.doi.org/10.1021/cr00011a001
14.
14. M. J. Therien, J. Chang, A. L. Raphael, B. E. Bowler, and H. B. Gray, in Structure and bonding (Springer, New York, 1991), pp. 109.
15.
15. B. E. Bowler, A. L. Raphael, and H. B. Gray, Prog. Inorg. Chem.: Bioinorg. Chem. 38, 259 (1990).
http://dx.doi.org/10.1002/SERIES2229
16.
16. B. Durham, L. P. Pan, S. Hahm, J. Long, and F. Millett, in Electron Transfer in Biology and the Solid State, edited by M. K. Johnson et al. (American Chemical Society, Washington, DC, 1990), pp. 181.
17.
17. B. A. Heller, D. Holten, and C. Kirmaier, Science 269, 940 (1995).
http://dx.doi.org/10.1126/science.7638616
18.
18. V. L. Davidson, Biochemistry 41, 14633 (2002).
http://dx.doi.org/10.1021/bi026812k
19.
19. A. Warshel, and D. W. Schlosser, Proc. Nat. Acad. Sci. U.S.A. 78, 5564 (1981).
http://dx.doi.org/10.1073/pnas.78.9.5564
20.
20. J. L. Willit, and E. F. Bowden, J. Electroanal. Chem. 221, 265 (1987).
http://dx.doi.org/10.1016/0022-0728(87)80264-4
21.
21. E. Strauss, B. Thomas, and S.-T. Yau, Langmuir 20, 8768 (2004).
http://dx.doi.org/10.1021/la049942y
22.
22. A. Kranich, H. K. Ly, P. Hildebrandt, and D. H. Murgida, J. Am. Chem. Soc. 130, 9844 (2008).
http://dx.doi.org/10.1021/ja8016895
23.
23. Y. Choi, and S.-T. Yau, Anal. Chem. 81, 7123 (2009).
http://dx.doi.org/10.1021/ac901126d
24.
24. P. Turano, and Y. Lu, in Handbook on Metalloproteins, edited by I. Bertini, A. Sigel, and H. Sigel (Marcel Dekker, New York, 2001).
25.
25. G. Wang, N. M. Thai, and S.-T. Yau, Electrochem. Comm. 8, 987 (2006).
http://dx.doi.org/10.1016/j.elecom.2006.03.046
26.
26. J. A. Runquist, and P. A. Loach, Biochim. Biophys. Acta 637, 231 (1981).
http://dx.doi.org/10.1016/0005-2728(81)90162-6
27.
27. V. Razumas, J. Kazlauskaite, T. Ruzgas, and J. Kulys, Bioelectroch. Bioener. 28, 159 (1992).
http://dx.doi.org/10.1016/0302-4598(92)80010-E
28.
28. D. N. Beratan, J. N. Betts, and J. N. onuchic, Science 252, 1285 (1991).
http://dx.doi.org/10.1126/science.1656523
29.
29. See supplementary material at http://dx.doi.org/10.1063/1.3672093 for the effect of reversing the polarity of VG on the redox properties of immobilized FePP, characterization of MP-11-immobilzied electrode, and the Lineweaver-Burk (LB) plot. [Supplementary Material]
30.
30. K. Shlgehara, and F. C. Anson, J. Phys. Chem. 86, 2776 (1982).
http://dx.doi.org/10.1021/j100211a043
31.
31. E. S. Snow, P. M. Campbell, R. W. Rendell, F. A. Buot, D. Park, C. R. K. Marrian, and R. Magno, Appl. Phys. Lett. 72, 3071 (1998).
http://dx.doi.org/10.1063/1.121544
32.
32. S.-T. Yau, and G. Qian, Appl. Phys. Lett. 86, 103508 (2005).
http://dx.doi.org/10.1063/1.1880445
33.
33. S. J. Tans, A. R. M. Verschueren, and C. Dekker, Nature 393, 49 (1998).
http://dx.doi.org/10.1038/29954
34.
34. A. J. Bard, and L. R. Faulkner, Electrochemical Methods (John Wiley & Sons, New Jersey, 2001), 2 edn.
35.
35. M. Wang, F. Zhao, Y. Liu, and S. Dong, Biosens. Bioelectron. 21, 159 (2005).
http://dx.doi.org/10.1016/j.bios.2004.08.012
36.
36. F. Mazzei, G. Favero, M. Frasconi, A. Tata, and F. Pepi, Chem. Eur. J. 15, 7359 (2009).
http://dx.doi.org/10.1002/chem.200900887
37.
37. T. Ruzgas, E. Csoregi, J. Emneus, L. Gorton, and G. Marko-Varga, Anal. Chim. Acta 330, 123 (1996).
http://dx.doi.org/10.1016/0003-2670(96)00169-9
38.
38. R. A. Kamin, and G. S. Wilson, Anal. Chem. 52, 1198 (1982).
http://dx.doi.org/10.1021/ac50058a010
39.
39. D. J. Voet, and J. G. Voet, Biochemistry (Wiley, New York, 1995), 2 edn.
40.
40. A. S. Kumar, and J.-M. Zen, Electroanalysis 14, 671 (2002).
http://dx.doi.org/10.1002/1521-4109(200205)14:10<671::AID-ELAN671>3.0.CO;2-O
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3672093
Loading
/content/aip/journal/adva/1/4/10.1063/1.3672093
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3672093
2011-12-12
2016-12-08

Abstract

Controlledreaction kinetics of the bio-catalytic system of microperoxidase-11 and hydrogen peroxide has been achieved using an electrostatic technique. The technique allowed independent control of 1) the thermodynamics of the system using electrochemical setup and 2) the quantum mechanical tunneling at the interface between microperoxidase-11 and the working electrode by applying a gating voltage to the electrode. The cathodic currents of electrodes immobilized with microperoxidase-11 showed a dependence on the gating voltage in the presence of hydrogen peroxide, indicating a controllable reduction reaction. The measured kinetic parameters of the bio-catalytic reduction showed nonlinear dependences on the gating voltage as the result of modified interfacial electron tunnel due to the field induced at the microperoxidase-11-electrode interface. Our results indicate that the kinetics of the reduction of hydrogen peroxide can be controlled by a gating voltage and illustrate the operation of a field-effect bio-catalytic transistor, whose current-generating mechanism is the conversion of hydrogen peroxide to water with the current being controlled by the gating voltage.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3672093.html;jsessionid=oF09ah4wz9jKzddWD5nFm7wd.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3672093&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3672093&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3672093'
Right1,Right2,Right3,