1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhancement of exciton photoluminescence intensity caused by the distortion of the crystal plane originating from the internal strain in a ZnO wafer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3672155
1.
1. D. K. Wickenden, C. B. Bargeron, W. A. Byden, J. Miragliotta, and T. J. Kistenmacher, Appl. Phys. Lett. 65, 2024 (1994).
http://dx.doi.org/10.1063/1.112782
2.
2. Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, and A. J. SpringThorpe, J. Appl. Phys. 81, 1683 (1997).
http://dx.doi.org/10.1063/1.364012
3.
3. L. H. Robins, J. T. Armstrong, R. B. Marinenko, A. J. Paul, J. G. Pellegrino, and K. A. Bertness, J. Appl. Phys. 93, 3747 (2003).
http://dx.doi.org/10.1063/1.1556554
4.
4. K. Bejtka, P. R. Edwards, R. W. Martin, S. Fernández-Garrido, and E. Calleja, J. Appl. Phys. 104, 073537 (2008).
http://dx.doi.org/10.1063/1.2993549
5.
5. L. L. Yang, Q. X. Zhao, G. Z. Xing, D. D. Wang, T. Wu., M. Willander, I. Ivanov, and J. H. Yang, Appl. Surf. Sci. 257, 8629 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.05.038
6.
6. A. Bensaada, A. Chennouf, R. W. Cochrane, J. T. Graham, R. Leonelli, and R. A. Masut, J. Appl. Phys. 75, 3024 (1994).
http://dx.doi.org/10.1063/1.356147
7.
7. D. Kim, M. Nakayama, O. Kojima, I. Tanaka, H. Ichida, T. Nakanishi, and H. Nishimura, Phys. Rev. B 60, 13879 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.13879
8.
8. M. -S. Lin, C. -F. Lin, W. -C. Huang, G. -M. Wang, B. -C. Shieh, J. -J. Dai, S. -Y. Chang, D. S. Wuu, P. -L. Liu, and R. -H. Horng, Appl. Phys. Express 4, 062101 (2011).
http://dx.doi.org/10.1143/APEX.4.062101
9.
9. D. Liang, D. C. Chapman, Y. L. Douglas, C. Oakley, T. Napoleon, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, J. E. Bowers, Appl. Phys. A 103, 213 (2011).
http://dx.doi.org/10.1007/s00339-010-5999-z
10.
10. A. Bakin, A. El-Shaer, A. C. Mofor, M. Kreye, A. Waag, F. Bertram, J. Christen, M. Heuken, and J. Stoimenos, J. Cryst. Growth 287, 7 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.10.033
11.
11. M. Rossetti, T. M. Smeeton, W. -S. Tan, M. Kauer, S. E. Hooper, J. Heffernan, H. Xiu, and C. J. Humphreys, Appl. Phys. Lett. 92, 151110 (2008).
http://dx.doi.org/10.1063/1.2908919
12.
12. J. -S. Song, H. Rho, M. S. Jeong, J. -W. Ju, and I. -H. Lee, Phys. Rev. B 81, 233304 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233304
13.
13. M. Kato, H. Ono, M. Ichimura, G. Feng, and T. Kimoto, Jpn. J. Appl. Phys. 50, 036603 (2011).
http://dx.doi.org/10.1143/JJAP.50.036603
14.
14. S. Shirakata, S. Yudate, J. Honda, and N. Iwado, Jpn. J. Appl. Phys. 50, 05FC02 (2011).
http://dx.doi.org/10.1143/JJAP.50.05FC02
15.
15. G. Cloud, Optical Methods of Engineering Analysis (Cambridge University Press, 1994) Chap. 4.
16.
16. E. E. Wahlstrom, Optical Crystallography (John Wiley & Sons, New York, 1951).
17.
17. V. P. Kompaneľtsev: Crystallogr. Rep. 51, 640 (2006).
http://dx.doi.org/10.1134/S1063774506040171
18.
18. H. Takeuchi, Rev. Sci. Instrumen. 82, 033907 (2011).
http://dx.doi.org/10.1063/1.3565165
19.
19. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010) p.9.
20.
20. B. D. Cullity, Elements of X-Ray Diffraction -2nd Edition (Addison-Wesley, 1978).
21.
21. International Tables for Crystallography Vol. A ed. by T. Hahn (4th edition, Kluwer Academic Publishers, 1995) pp. 574575.
22.
22. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010), p.235.
23.
23. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010), p.147.
24.
24. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).
http://dx.doi.org/10.1063/1.1545157
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3672155
Loading
/content/aip/journal/adva/1/4/10.1063/1.3672155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3672155
2011-12-12
2014-07-28

Abstract

We have investigated the relation between the excitonphotoluminescence intensity and distortion of the crystal plane in a ZnO wafer. The present investigation utilizes the following two characterization methods that complement the result of the photoluminescence measurement: a circular polariscopic measurement and a θ-2θx-ray diffraction measurement. The circular polariscopic map clarifies the distribution of the strain exists in the ZnO wafer. The strain found in the circular polariscopic analysis indicates the existence of the crystal-plane distortion, which is confirmed from the appearance of the forbidden reflection line in the x-ray diffraction pattern. The photoluminescence measurements at different positions sensitive to the crystal-plane distortion were performed on the basis of the above-mentioned complementary information. It is found that the crystal-plane distortion causes the enhancement of the excitonphotoluminescence intensity. The responsible factor is attributed to the suppression of the excitondiffusion caused by the crystal-plane distortion. This is in contrast to the usual interpretation that the lowering of the crystalline quality leads to the reduction of the excitonphotoluminescence intensity; namely, the aid of complementary information is essential to precisely interpret the photoluminescence intensity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3672155.html;jsessionid=1r4sv9cef367f.x-aip-live-06?itemId=/content/aip/journal/adva/1/4/10.1063/1.3672155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of exciton photoluminescence intensity caused by the distortion of the crystal plane originating from the internal strain in a ZnO wafer
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3672155
10.1063/1.3672155
SEARCH_EXPAND_ITEM