1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Enhancement of exciton photoluminescence intensity caused by the distortion of the crystal plane originating from the internal strain in a ZnO wafer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3672155
1.
1. D. K. Wickenden, C. B. Bargeron, W. A. Byden, J. Miragliotta, and T. J. Kistenmacher, Appl. Phys. Lett. 65, 2024 (1994).
http://dx.doi.org/10.1063/1.112782
2.
2. Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, and A. J. SpringThorpe, J. Appl. Phys. 81, 1683 (1997).
http://dx.doi.org/10.1063/1.364012
3.
3. L. H. Robins, J. T. Armstrong, R. B. Marinenko, A. J. Paul, J. G. Pellegrino, and K. A. Bertness, J. Appl. Phys. 93, 3747 (2003).
http://dx.doi.org/10.1063/1.1556554
4.
4. K. Bejtka, P. R. Edwards, R. W. Martin, S. Fernández-Garrido, and E. Calleja, J. Appl. Phys. 104, 073537 (2008).
http://dx.doi.org/10.1063/1.2993549
5.
5. L. L. Yang, Q. X. Zhao, G. Z. Xing, D. D. Wang, T. Wu., M. Willander, I. Ivanov, and J. H. Yang, Appl. Surf. Sci. 257, 8629 (2011).
http://dx.doi.org/10.1016/j.apsusc.2011.05.038
6.
6. A. Bensaada, A. Chennouf, R. W. Cochrane, J. T. Graham, R. Leonelli, and R. A. Masut, J. Appl. Phys. 75, 3024 (1994).
http://dx.doi.org/10.1063/1.356147
7.
7. D. Kim, M. Nakayama, O. Kojima, I. Tanaka, H. Ichida, T. Nakanishi, and H. Nishimura, Phys. Rev. B 60, 13879 (1999).
http://dx.doi.org/10.1103/PhysRevB.60.13879
8.
8. M. -S. Lin, C. -F. Lin, W. -C. Huang, G. -M. Wang, B. -C. Shieh, J. -J. Dai, S. -Y. Chang, D. S. Wuu, P. -L. Liu, and R. -H. Horng, Appl. Phys. Express 4, 062101 (2011).
http://dx.doi.org/10.1143/APEX.4.062101
9.
9. D. Liang, D. C. Chapman, Y. L. Douglas, C. Oakley, T. Napoleon, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, J. E. Bowers, Appl. Phys. A 103, 213 (2011).
http://dx.doi.org/10.1007/s00339-010-5999-z
10.
10. A. Bakin, A. El-Shaer, A. C. Mofor, M. Kreye, A. Waag, F. Bertram, J. Christen, M. Heuken, and J. Stoimenos, J. Cryst. Growth 287, 7 (2006).
http://dx.doi.org/10.1016/j.jcrysgro.2005.10.033
11.
11. M. Rossetti, T. M. Smeeton, W. -S. Tan, M. Kauer, S. E. Hooper, J. Heffernan, H. Xiu, and C. J. Humphreys, Appl. Phys. Lett. 92, 151110 (2008).
http://dx.doi.org/10.1063/1.2908919
12.
12. J. -S. Song, H. Rho, M. S. Jeong, J. -W. Ju, and I. -H. Lee, Phys. Rev. B 81, 233304 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233304
13.
13. M. Kato, H. Ono, M. Ichimura, G. Feng, and T. Kimoto, Jpn. J. Appl. Phys. 50, 036603 (2011).
http://dx.doi.org/10.1143/JJAP.50.036603
14.
14. S. Shirakata, S. Yudate, J. Honda, and N. Iwado, Jpn. J. Appl. Phys. 50, 05FC02 (2011).
http://dx.doi.org/10.1143/JJAP.50.05FC02
15.
15. G. Cloud, Optical Methods of Engineering Analysis (Cambridge University Press, 1994) Chap. 4.
16.
16. E. E. Wahlstrom, Optical Crystallography (John Wiley & Sons, New York, 1951).
17.
17. V. P. Kompaneľtsev: Crystallogr. Rep. 51, 640 (2006).
http://dx.doi.org/10.1134/S1063774506040171
18.
18. H. Takeuchi, Rev. Sci. Instrumen. 82, 033907 (2011).
http://dx.doi.org/10.1063/1.3565165
19.
19. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010) p.9.
20.
20. B. D. Cullity, Elements of X-Ray Diffraction -2nd Edition (Addison-Wesley, 1978).
21.
21. International Tables for Crystallography Vol. A ed. by T. Hahn (4th edition, Kluwer Academic Publishers, 1995) pp. 574575.
22.
22. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010), p.235.
23.
23. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010), p.147.
24.
24. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).
http://dx.doi.org/10.1063/1.1545157
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3672155
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Optical photograph of the present sample.

Image of FIG. 2.

Click to view

FIG. 2.

Circular polariscopic map of the sample. The dashed arrow labeled by A, B, and C indicates the position, in which the θ-2θ x-ray diffraction pattern measurement (for Fig. 3) and photoluminescence measurement (For Fig. 4) were performed. The solid arrow indicates the position, in which photoluminescence measurement (For Fig. 5) was applied.

Image of FIG. 3.

Click to view

FIG. 3.

θ-2θ x-ray diffraction patterns of regions A, B, and C. For clarity, each diffraction pattern is vertically shifted.

Image of FIG. 4.

Click to view

FIG. 4.

Photoluminescence spectra of regions A, B, and C.

Image of FIG. 5.

Click to view

FIG. 5.

(Solid circle) The peak intensity of the exciton photoluminescence band plotted as a function of distance from the origin of the solid arrow. (Open circle) The peak photon energy of the exciton photoluminescence band plotted as a function of distance from the origin of the solid arrow. The inset of the Fig. 5 shows the area of the circular polariscopic map, in which the photoluminescence measurement was carried out.

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3672155
2011-12-12
2014-04-24

Abstract

We have investigated the relation between the excitonphotoluminescence intensity and distortion of the crystal plane in a ZnO wafer. The present investigation utilizes the following two characterization methods that complement the result of the photoluminescence measurement: a circular polariscopic measurement and a θ-2θx-ray diffraction measurement. The circular polariscopic map clarifies the distribution of the strain exists in the ZnO wafer. The strain found in the circular polariscopic analysis indicates the existence of the crystal-plane distortion, which is confirmed from the appearance of the forbidden reflection line in the x-ray diffraction pattern. The photoluminescence measurements at different positions sensitive to the crystal-plane distortion were performed on the basis of the above-mentioned complementary information. It is found that the crystal-plane distortion causes the enhancement of the excitonphotoluminescence intensity. The responsible factor is attributed to the suppression of the excitondiffusion caused by the crystal-plane distortion. This is in contrast to the usual interpretation that the lowering of the crystalline quality leads to the reduction of the excitonphotoluminescence intensity; namely, the aid of complementary information is essential to precisely interpret the photoluminescence intensity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3672155.html;jsessionid=6rig70rsej1r5.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3672155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Enhancement of exciton photoluminescence intensity caused by the distortion of the crystal plane originating from the internal strain in a ZnO wafer
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3672155
10.1063/1.3672155
SEARCH_EXPAND_ITEM