Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. D. K. Wickenden, C. B. Bargeron, W. A. Byden, J. Miragliotta, and T. J. Kistenmacher, Appl. Phys. Lett. 65, 2024 (1994).
2. Z. R. Wasilewski, M. M. Dion, D. J. Lockwood, P. Poole, R. W. Streater, and A. J. SpringThorpe, J. Appl. Phys. 81, 1683 (1997).
3. L. H. Robins, J. T. Armstrong, R. B. Marinenko, A. J. Paul, J. G. Pellegrino, and K. A. Bertness, J. Appl. Phys. 93, 3747 (2003).
4. K. Bejtka, P. R. Edwards, R. W. Martin, S. Fernández-Garrido, and E. Calleja, J. Appl. Phys. 104, 073537 (2008).
5. L. L. Yang, Q. X. Zhao, G. Z. Xing, D. D. Wang, T. Wu., M. Willander, I. Ivanov, and J. H. Yang, Appl. Surf. Sci. 257, 8629 (2011).
6. A. Bensaada, A. Chennouf, R. W. Cochrane, J. T. Graham, R. Leonelli, and R. A. Masut, J. Appl. Phys. 75, 3024 (1994).
7. D. Kim, M. Nakayama, O. Kojima, I. Tanaka, H. Ichida, T. Nakanishi, and H. Nishimura, Phys. Rev. B 60, 13879 (1999).
8. M. -S. Lin, C. -F. Lin, W. -C. Huang, G. -M. Wang, B. -C. Shieh, J. -J. Dai, S. -Y. Chang, D. S. Wuu, P. -L. Liu, and R. -H. Horng, Appl. Phys. Express 4, 062101 (2011).
9. D. Liang, D. C. Chapman, Y. L. Douglas, C. Oakley, T. Napoleon, P. W. Juodawlkis, C. Brubaker, C. Mann, H. Bar, O. Raday, J. E. Bowers, Appl. Phys. A 103, 213 (2011).
10. A. Bakin, A. El-Shaer, A. C. Mofor, M. Kreye, A. Waag, F. Bertram, J. Christen, M. Heuken, and J. Stoimenos, J. Cryst. Growth 287, 7 (2006).
11. M. Rossetti, T. M. Smeeton, W. -S. Tan, M. Kauer, S. E. Hooper, J. Heffernan, H. Xiu, and C. J. Humphreys, Appl. Phys. Lett. 92, 151110 (2008).
12. J. -S. Song, H. Rho, M. S. Jeong, J. -W. Ju, and I. -H. Lee, Phys. Rev. B 81, 233304 (2010).
13. M. Kato, H. Ono, M. Ichimura, G. Feng, and T. Kimoto, Jpn. J. Appl. Phys. 50, 036603 (2011).
14. S. Shirakata, S. Yudate, J. Honda, and N. Iwado, Jpn. J. Appl. Phys. 50, 05FC02 (2011).
15. G. Cloud, Optical Methods of Engineering Analysis (Cambridge University Press, 1994) Chap. 4.
16. E. E. Wahlstrom, Optical Crystallography (John Wiley & Sons, New York, 1951).
17. V. P. Kompaneľtsev: Crystallogr. Rep. 51, 640 (2006).
18. H. Takeuchi, Rev. Sci. Instrumen. 82, 033907 (2011).
19. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010) p.9.
20. B. D. Cullity, Elements of X-Ray Diffraction -2nd Edition (Addison-Wesley, 1978).
21. International Tables for Crystallography Vol. A ed. by T. Hahn (4th edition, Kluwer Academic Publishers, 1995) pp. 574575.
22. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010), p.235.
23. Zinc Oxide ed. by C. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts (Springer, 2010), p.147.
24. D. W. Hamby, D. A. Lucca, M. J. Klopfstein, and G. Cantwell, J. Appl. Phys. 93, 3214 (2003).

Data & Media loading...


Article metrics loading...



We have investigated the relation between the excitonphotoluminescence intensity and distortion of the crystal plane in a ZnO wafer. The present investigation utilizes the following two characterization methods that complement the result of the photoluminescence measurement: a circular polariscopic measurement and a θ-2θx-ray diffraction measurement. The circular polariscopic map clarifies the distribution of the strain exists in the ZnO wafer. The strain found in the circular polariscopic analysis indicates the existence of the crystal-plane distortion, which is confirmed from the appearance of the forbidden reflection line in the x-ray diffraction pattern. The photoluminescence measurements at different positions sensitive to the crystal-plane distortion were performed on the basis of the above-mentioned complementary information. It is found that the crystal-plane distortion causes the enhancement of the excitonphotoluminescence intensity. The responsible factor is attributed to the suppression of the excitondiffusion caused by the crystal-plane distortion. This is in contrast to the usual interpretation that the lowering of the crystalline quality leads to the reduction of the excitonphotoluminescence intensity; namely, the aid of complementary information is essential to precisely interpret the photoluminescence intensity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd