Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. P. Apte, B. Doering, P. Gargini, et al., in International Technology Roadmap for Semiconductor 2010 Uptdate, edited by I. R. Committee (2010),
2. L. Qian and E. Winfree, Science 332(6034), 11961201 (2011).
3. J. H. Schon, H. Meng and Z. Bao, Nature 413(6857), 713716 (2001).
4. S. Neusser and D. Grundler, Advanced Materials 21(28), 29272932 (2009).
5. A. Khitun, M. Bao and K. L. Wang, Journal of Physics D – Applied Physics 43(26) (2010).
6. A. Ney, C. Pampuch, R. Koch and K. H. Ploog, Nature 425(6957), 485487 (2003).
7. R. P. Cowburn and M. E. Welland, Science 287(5457), 14661468 (2000).
8. A. Imre, G. Csaba, G. H. Bernstein, W. Porod and V. Metlushko, Superlattices and Microstructures 34(3-6), 513518 (2004).
9. D. B. Carlton, N. C. Emley, E. Tuchfeld and J. Bokor, Nano Letters 8(12), 41734178 (2008).
10. K. Walus, G. Schulhof, G. A. Jullien, R. Zhang and W. Wang, presented at the Signals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilomar Conference on, 2004 (unpublished).
11. M. Niemier, M. Alam, X. S. Hu, G. Bernstein, W. Porod, M. Putney and J. DeAngelis, in Proceedings of the 2007 international symposium on Low power electronics and design (ACM, Portland, OR, USA, 2007), pp. 2631.
12. A. Imre, G. Csaba, L. Ji, A. Orlov, G. H. Bernstein and W. Porod, Science 311(5758), 205208 (2006).
13. W. F. Egelhoff Jr, P. W. T. Pong, J. Unguris, R. D. McMichael, E. R. Nowak, A. S. Edelstein, J. E. Burnette and G. A. Fischer, Sensors and Actuators A: Physical 155(2), 217225 (2009).
14. W. F. Egelhoff, V. E. Höink, J. W. Lau, W. F. Shen, B. D. Schrag and G. Xiao, 107(9), 09C705 (2010).
15. P. W. T. Pong, B. Schrag, A. J. Shapiro, R. D. McMichael and J. W. F. Egelhoff, 105(7), 07E723 (2009).
16. J. M. Almeida, P. Wisniowski and P. P. Freitas, 103(7), 07E922 (2008).
17. L. R. Shah, N. Bhargava, S. Kim, R. Stearrett, X. Kou, X. Sun, S. Sun, J. Kolodzey, E. R. Nowak and J. Q. Xiao, 109(7), 07C731 (2011).
18. M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan, M. DeHerrera, B. N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N. D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J. M. Slaughter, K. Smith, J. J. Sun, M. Lien, K. Papworth, P. Shah, W. Qin, R. Williams, L. Wise and S. Tehrani, in Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International (2003), pp. 343631343633.
19. S. Parkin, J. Xin, C. Kaiser, A. Panchula, K. Roche and M. Samant, Proceedings of the IEEE 91(5), 661680 (2003).
20. S. A. Wolf, L. Jiwei, M. R. Stan, E. Chen and D. M. Treger, Proceedings of the IEEE 98(12), 21552168 (2010).
21. S. Moralejo, F. J. Castano, C. A. Ross, C. Redondo and F. Castano, Journal of Physics D: Applied Physics 41(19), 195003 (2008).
22. M. Becherer, G. Csaba, R. Emling, P. Osswald, W. Porod, P. Lugli and D. Schmitt-Landsiedel, in Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International (2008), pp. 10431046.
23. M. Becherer, J. Kiermaier, S. Breitkreutz, G. Csaba, X. Ju, J. Rezgani, T. Kießling, C. Yilmaz, P. Osswald, P. Lugli and D. Schmitt-Landsiedel, Solid-State Electronics 54(9), 10271032 (2010).
24. A. Fert, Angewandte Chemie International Edition 47(32), 59565967 (2008).
25. P. A. Grunberg, Reviews of Modern Physics 80(4), 1531 (2008).
26. A. A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D. D. Djayaprawira, N. Watanabe and S. Yuasa, Nature 438(7066), 339342 (2005).
27. M. Tsoi, A. G. M. Jansen, J. Bass, W. C. Chiang, M. Seck, V. Tsoi and P. Wyder, Physical Review Letters 80(19), 4281 (1998).
28. E. B. Myers, D. C. Ralph, J. A. Katine, R. N. Louie and R. A. Buhrman, Science 285(5429), 867870 (1999).
29. A. Lyle, A. Klemm, J. Harms, Y. Zhang, H. Zhao and J.-P. Wang, Applied Physics Letters 98(9), 092502092502 (2011).
30. See supplementary material at for a full description of the fabrication process and STT/HClock phase measurements. [Supplementary Material]
31. M. J. Donahue and D. G. Porter, in Interagency Report (National Institute of Standards and Technology, 1999), Vol. NISTIR 6376.
32. J. Moritz, C. Ó. Coileáin, G. Feng, K. Nakajima, S. van Dijken and J. M. D. Coey, Journal of Magnetism and Magnetic Materials 296(2), 118123 (2006).

Data & Media loading...


Article metrics loading...



An experimental demonstration utilizing a spintronic input/output (I/O) interface for arrays of closely spaced nanomagnets is presented. The free layers of magnetic tunnel junctions (MTJs) form dipole coupled nanomagnet arrays which can be applied to different contexts including Magnetic Quantum Cellular Automata (MQCA) for logic applications and self-biased devices for field sensing applications. Dipole coupled nanomagnet arrays demonstrate adaptability to a variety of contexts due to the ability for tuning of magnetic response. Spintronics allows individual nanomagnets to be manipulated with spin transfer torque and monitored with magnetoresistance. This facilitates measurement of the magnetic coupling which is important for (yet to be demonstrated) data propagation reliability studies. In addition, the same magnetic coupling can be tuned to reduce coercivity for field sensing. Dipole coupled nanomagnet arrays have the potential to be thousands of times more energy efficient than CMOS technology for logic applications, and they also have the potential to form multi-axis field sensors.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd