Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3674298
1.
1. T. L. Hill, An Introduction to Statistical Thermodynamics (Reading: Addison-Wesley, 1986).
2.
2. (a) M. A. Ditzler, M. Otyepka, J. Sponer, and N. G. Walter, Molecular Dynamics and Quantum Mechanics of RNA: Conformational and Chemical Change We Can Believe In. Acc. Chem. Res. 43, 40 (2010);
http://dx.doi.org/10.1021/ar900093g
2.(b) O. Engkvist, P. O. Astrand, and G. Karlstrom, Accurate Intermolecular Potentials Obtained from Molecular Wave Functions: Bridging the Gap between Quantum Chemistry and Molecular Simulations. Chem. Rev. 100, 4087 (2000).
http://dx.doi.org/10.1021/cr9900477
3.
3. A. R. Leach, Molecular Modelling: Principles and Applications (Pearson Education Limited, 2001).
4.
4. J.-P. Hansen, and I. R. McDonald, Theory of Simple Liquids. -3rd Ed (Academic Press: London, 2006).
5.
5. (a) R. Rajagopalan, and S.-H. Chen, Eds. Micellar Solutions and Microemulsions: Structure, Dynamics, and Statistical Thermodynamics (Springer-Verlag, New York, 1990);
5.(b) A. K. Arora, and R. Rajagopalan, Applications of Colloids in Studies of Phase Transitions and Patterning of Surfaces. Curr. Opin. Colloid & Interface Sci. 2, 391 (1997).
http://dx.doi.org/10.1016/S1359-0294(97)80082-9
6.
6. D. Frenkel, and B. Smit, Understanding Molecular Simulation: from Algorithms to Applications (Academic Press: Boston, MA, 2002).
7.
7. J. D. van der Waals, On the Continuity of the Gaseous and Liquid States (Thesis), University of Amsterdam, 1873.
8.
8. V. L. Ginzburg, and L. D. Landau, On the Theory of Superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950).
9.
9. J. W. Cahn, and J. E. Hilliard, Free Energy of a Nonuniform System. I. Interfacial Free Energy. J. Chem. Phys. 28, 258 (1958).
http://dx.doi.org/10.1063/1.1744102
10.
10. L. S. Ornstein, and F. Zernike, Accidental Deviations of Density and Opalescence at the Critical Point in a Single Substance. Proc. Akad. Sci. (Amsterdam), 17, 793 (1914).
11.
11. R. W. Zwanzig, High-Temperature Equation of State by a Perturbation Method. I. Nonpolar Gases. J. Chem. Phys. 22, 1420 (1954).
http://dx.doi.org/10.1063/1.1740193
12.
12. (a) J. A. Barker, and D. Henderson, Perturbation Theory and Equation of State for Fluids: the Square-Well Potential. J. Chem. Phys. 47, 2856 (1976).
http://dx.doi.org/10.1063/1.1712308
12.(b) J. A. Barker, and D. Henderson, What Is “Liquid”? Understanding the States of Matter. Rev. Mod. Phys. 48, 587 (1976).
http://dx.doi.org/10.1103/RevModPhys.48.587
13.
13. D. Henderson, Eds. Fundamentals of Inhomogeneous Fluids (Marcel Dekker, New York, 1992).
14.
14. S. Zhou, Thermodynamic Perturbation Theory in Fluid Statistical Mechanics. Phys. Rev. E 74, 031119 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.031119
15.
15. S. Zhou, Reformulation of Liquid Perturbation Theory for Low Temperatures, Phys. Rev. E 79, 011126 (2009).
http://dx.doi.org/10.1103/PhysRevE.79.011126
16.
16. E. Praestgaard, and S. Toxvaerd, Perturbation Theory for Fluids. J. Chem. Phys. 51, 1895 (1969).
http://dx.doi.org/10.1063/1.1672274
17.
17. S. Zhou, Fifth-Order Thermodynamic Perturbation Theory of Uniform and Nonuniform Fluids. Phys. Rev. E 77, 041110 (2008).
http://dx.doi.org/10.1103/PhysRevE.77.041110
18.
18. S. Zhou, and J. R. Solana, Third-Order Thermodynamic Perturbation Theory for Effective Potentials That Model Complex Fluids, Phys. Rev. E 78, 021503 (2008).
http://dx.doi.org/10.1103/PhysRevE.78.021503
19.
19. A. Malijevsky, and S. Labik, The Bridge Function for Hard Spheres. Mol. Phys. 60, 663 (1987).
http://dx.doi.org/10.1080/00268978700100441
20.
20. (a) L. L. Lee, Hard Sphere Properties Obtained from a Consistent Closure. J. Chem. Phys. 110, 7589 (1999);
http://dx.doi.org/10.1063/1.478661
20.(b) J.-M. Bomont, and J.-L. Bretonnet, a Consistent Integral Equation Theory for Hard Spheres. J. Chem. Phys. 121, 1548 (2004).
http://dx.doi.org/10.1063/1.1764772
21.
21. S. Zhou, How to Make Thermodynamic Perturbation Theory to Be Suitable for Low Temperature? J. Chem. Phys. 130, 054103 (2009).
http://dx.doi.org/10.1063/1.3072795
22.
22. S. Zhou, Non hard sphere thermodynamic perturbation theory over a wide range of temperatures, J. Stat. Mech.-Theory E /09/P09001 (2011).
23.
23. S. Zhou, Non-hard sphere thermodynamic perturbation theory, J. Chem. Phys. 135, 074103 (2011).
http://dx.doi.org/10.1063/1.3625919
24.
24. J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, the Lennard-Jones Equation of State Revisited. Mol. Phys. 78, 591 (1993).
http://dx.doi.org/10.1080/00268979300100411
25.
25. S. Zhou, Theoretical Investigation about the Possible Consequence of Artificial Discontinuity in Pair Potential Function on Overall Phase Behavior. J. Phys. Chem. B 113, 8635 (2009).
http://dx.doi.org/10.1021/jp9007637
26.
26. S. Zhou, Thermodynamics and Phase Behavior of a Triangle-Well Model and Density-Dependent Variety. J. Chem. Phys. 130, 014502 (2009).
http://dx.doi.org/10.1063/1.3049399
27.
27. S. Zhou, and J. R. Solana, Comprehensive Investigation about the Second Order Term of Thermodynamic Perturbation Expansion, J. Chem. Phys. 131, 134106 (2009).
http://dx.doi.org/10.1063/1.3242801
28.
28. R. Espindola-Heredia, F. del Rio, and A. Malijevsky, Optimized Equation of the State of the Square-Well Fluid of Variable Range Based on a Fourth-Order Free-Energy Expansion. J. Chem. Phys. 130, 024509 (2009).
http://dx.doi.org/10.1063/1.3054361
29.
29. S. Zhou, and J. R. Solana, Low Temperature Behavior of Thermodynamic Perturbation Theory, Phys. Chem. Chem. Phys. 11, 11528 (2009).
http://dx.doi.org/10.1039/b916373e
30.
30. S. Zhou, Improvement on Macroscopic Compressibility Approximation and Beyond. J. Chem. Phys. 125, 144518 (2006).
http://dx.doi.org/10.1063/1.2353834
31.
31. S. Zhou, Performance Evaluation of Third-Order Thermodynamic Perturbation Theory and Comparison with Existing Liquid State Theories. J. Phys. Chem. B 111, 10736 (2007).
http://dx.doi.org/10.1021/jp071044y
32.
32. J. R. Solana, Thermodynamic Properties of Double Square-Well Fluids: Computer Simulations and Theory. J. Chem. Phys. 129, 244502 (2008).
http://dx.doi.org/10.1063/1.3043571
33.
33. D. Pini, G. Stell, and J. S. Høye, Self-Consistent Approximation for Fluids and Lattice Gases. Int. J. Thermophys. 19, 1029 (1998).
http://dx.doi.org/10.1023/A:1022673222199
34.
34. G. Zerah, and J.-P. Hansen, Self-Consistent Integral Equations for Fluid Pair Distribution Functions: Another Attempt. J. Chem. Phys. 84, 2336 (1986).
http://dx.doi.org/10.1063/1.450397
35.
35. C. Caccamo, and G. Pellicane, Microscopic Theories of Model Macromolecular Fluids and Fullerenes: the Role of Thermodynamic Consistency. J. Chem. Phys. 117, 5072 (2002).
http://dx.doi.org/10.1063/1.1499482
36.
36. Y. Rosenfeld, and N. W. Ashcroft, Theory of Simple Classical Fluids: Universality in the Short-Range Structure. Phys. Rev. A 20, 1208 (1979).
http://dx.doi.org/10.1103/PhysRevA.20.1208
37.
37. (a) A. Parola, and L. Reatto, Liquid-State Theory for Critical Phenomena. Phys. Rev. Lett. 53, 2417 (1984);
http://dx.doi.org/10.1103/PhysRevLett.53.2417
37.(b) M. Tau, A. Parola, D. Pini, and L. Reatto, Differential Theory of Fluids below the Critical Temperature: Study of the Lennard-Jones Fluid and of a Model of C60. Phys. Rev. E 52, 2644 (1995).
http://dx.doi.org/10.1103/PhysRevE.52.2644
38.
38. A. Reiner, and G. Kahl, The Hierarchical Reference Theory as Applied to Square Well Fluids of Variable Range J. Chem. Phys. 117, 4925 (2002).
http://dx.doi.org/10.1063/1.1483258
39.
39. S. Zhou, Local Self-Consistent Ornstein-Zernike Integral Equation Theory and Application to a Generalized Lennard-Jones Potential, J. Phys. Chem. B 114, 11525 (2010).
http://dx.doi.org/10.1021/jp1038317
40.
40. S. Zhou, A New Scheme for Perturbation Contribution in Density Functional Theory and Application to Solvation Force and Critical Fluctuations. J. Chem. Phys. 131, 134702 (2009).
http://dx.doi.org/10.1063/1.3242717
41.
41. S. Zhou, Going beyond the Mean Field Approximation in Classical Density Functional Theory and Application to One Attractive Core-Softened Model Fluid. J. Stat. Mech.-Theory E /11/P11039 (2010).
42.
42. S. Zhou, Free Energy Density Functional for Adsorption of Fluids in Nanopores. Langmuir, 26, 17037 (2010).
http://dx.doi.org/10.1021/la102341a
43.
43. S. Zhou, New Free Energy Density Functional and Application to Core-Softened Fluid. J. Chem. Phys. 132, 194112 (2010).
http://dx.doi.org/10.1063/1.3435206
44.
44. R. Lovett, and M. Baus, van der Waals Theory for the Spatial Distribution of the Tension in an Interface. I. Density Functional Theory. J. Chem. Phys. 111, 5544 (1999).
http://dx.doi.org/10.1063/1.479813
45.
45. P. I. Ravikovitch, and A. V. Neimark, Density Functional Theory Model of Adsorption on Amorphous and Microporous Silica Materials. Langmuir, 22, 11171 (2006).
http://dx.doi.org/10.1021/la0616146
46.
46. V. Talanquer, and D. W. Oxtoby, Density Functional Analysis of Phenomenological Theories of Gas-Liquid Nucleation. J. Phys. Chem. B 99, 2865 (1995).
47.
47. R. Ramirez, and D. Borgis, Density Functional Theory of Solvation and Its Relation to Implicit Solvent Models. J. Phys. Chem. B 109, 6754 (2005).
http://dx.doi.org/10.1021/jp045453v
48.
48. S. X. Sun, Weighted Density Functional Theory of the Solvophobic Effect. Phys. Rev. E 64, 021512 (2001).
http://dx.doi.org/10.1103/PhysRevE.64.021512
49.
49. G. N. Chuev, and V. F. Sokolov, Hydration of Hydrophobic Solutes Treated by the Fundamental Measure Approach. J. Phys. Chem. B 110, 18496 (2006).
http://dx.doi.org/10.1021/jp061491y
50.
50. (a) C. Lastoskie, K. E. Gubbins, and N. Quirke, Pore Size Heterogeneity and the Carbon Slit Pore: a Density Functional Theory Model. Langmuir, 9, 2693 (1993);
http://dx.doi.org/10.1021/la00034a032
50.(b) K. Stepniak, A. Patrykiejew, Z. Sokolowska, and S. Sokolowski, Capillary Condensation of Associating Fluids in Slit-Like Pores: a Density Functional Theory. J. Colloid and Interface Sci. 214, 91 (1999).
http://dx.doi.org/10.1006/jcis.1999.6170
51.
51. A. Patrykiejew, and S. Sokolowski, Adsorption of Associating Fluids on Solid Surfaces: Wetting Transition from Density Functional Theory. J. Phys. Chem. B 103, 4466 (1999).
http://dx.doi.org/10.1021/jp982382p
52.
52. A. G. Salinger, and L. J. D. Frink, Rapid Analysis of Phase Behavior with Density Functional Theory. I. Novel Numerical Methods. J. Chem. Phys. 118, 7457 (2003).
http://dx.doi.org/10.1063/1.1558313
53.
53. (a) M. S. Wertheim, Fluids with Highly Directional Attractive Forces. I. Statistical Thermodynamics. J. Stat. Phys. 35, 19 (1984);
http://dx.doi.org/10.1007/BF01017362
53.(b) M. S. Wertheim, Fluids with Highly Directional Attractive Forces. II. Thermodynamic Perturbation Theory and Integral Equations. J. Stat. Phys. 35, 35 (1984).
http://dx.doi.org/10.1007/BF01017363
54.
54. (a) W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, New Reference Equation of State for Associating Liquids. Ind. Eng. Chem. Res. 29, 1709 (1990);
http://dx.doi.org/10.1021/ie00104a021
54.(b) C. Tsioptsias, I. Tsivintzelis, and C. Panayiotou, Equation-of-State Modeling of Mixtures with Ionic Liquids. Phys. Chem. Chem. Phys. 12, 4843 (2010).
http://dx.doi.org/10.1039/c000208a
55.
55. S. P. Tan, H. Adidharma, and M. Radosz, Recent Advances and Applications of Statistical Associating Fluid Theory. Ind. Eng. Chem. Res. 47, 8063 (2008).
http://dx.doi.org/10.1021/ie8008764
56.
56. S. Tripathi, and W. G. Chapman, Microstructure of Inhomogeneous Polyatomic Mixtures from a Density Functional Formalism for Atomic Mixtures. J. Chem. Phys. 122, 094506 (2005).
http://dx.doi.org/10.1063/1.1853371
57.
57. (a) A. Bymaster, and W. G. Chapman, an iSAFT Density Functional Theory for Associating Polyatomic Molecules. J. Phys. Chem. B 114, 12298 (2010);
http://dx.doi.org/10.1021/jp102677m
57.(b) S. Zhou, Acute Effect of Trace Component on Capillary Phase Transition of n-Alkanes, J. Stat. Mech.-Theory E P05023 (2011).
http://dx.doi.org/10.1088/1742-5468/2011/05/P05023
58.
58. (a) J. A. White, Contribution of Fluctuations to Thermal Properties of Fluids with Attractive Forces of Limited Range: Theory Compared with PVT and Cv Data for Argon. Fluid Phase Equilib. 75, 53 (1992);
http://dx.doi.org/10.1016/0378-3812(92)87006-9
58.(b) J. A. White, Global Renormalization Calculations Compared with Simulations for Square-Well Fluids: Widths 3.0 and 1.5. J. Chem. Phys. 113, 1580 (2000).
http://dx.doi.org/10.1063/1.481945
59.
59. S. Zhou, ‘Exact’ integral equation theory and local formulation for excess thermodynamic properties of hard spheres. Chem. Phys. 330, 478 (2006).
http://dx.doi.org/10.1016/j.chemphys.2006.09.019
60.
60. S. Zhou, Accurate and local formulation for thermodynamic properties directly from integral equation method. Theor. Chem. Acc. 117, 555 (2007).
http://dx.doi.org/10.1007/s00214-006-0188-z
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3674298
Loading
/content/aip/journal/adva/1/4/10.1063/1.3674298
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3674298
2011-12-20
2016-09-27

Abstract

Thermodynamic and structural properties of liquids are of fundamental interest in physics, chemistry, and biology, and perturbation approach has been fundamental to liquid theoretical approaches since the dawn of modern statistical mechanics and remains so to this day. Although thermodynamicperturbation theory (TPT) is widely used in the chemical physics community, one of the most popular versions of the TPT, i.e. Zwanzig (Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420-1426) 1st-order high temperature series expansion (HTSE) TPT and its 2nd-order counterpart under a macroscopic compressibility approximation of Barker-Henderson (Barker, J. A.; Henderson, D. J. Chem. Phys. 1967, 47, 2856-2861), have some serious shortcomings: (i) the nth-order term of the HTSE is involved with reference fluid distribution functions of order up to 2n, and the higher-order terms hence progressively become more complicated and numerically inaccessible; (ii) the performance of the HTSE rapidly deteriorates and the calculated results become even qualitatively incorrect as the temperature of interest decreases. This account deals with the developments that we have made over the last five years or so to advance a coupling parameter series expansion (CPSE) and a non hard sphere (HS) perturbation strategy that has scored some of its greatest successes in overcoming the above-mentioned difficulties. In this account (i) we expatiate on implementation details of our schemes: how input information indispensable to high-order truncation of the CPSE in both the HS and non HS perturbation schemes is calculated by an Ornstein-Zernike integral equation theory; how high-order thermodynamic quantities, such as critical parameters and excess constant volume heat capacity, are extracted from the resulting excess Helmholtz free energy with irregular and inevitable numerical errors; how to select reference potential in the non HS perturbation scheme. (ii) We give a quantitative analysis on why convergence speed of the CPSE in both the HS and non HS perturbation schemes is certainly faster than that of the HTSE and the HS perturbation scheme. (iii) We illustrate applications of the CPSE TPT in both the HS and non HS perturbation schemes in calculating thermodynamic properties of various coarse-grained potential function models and as input information of other liquid state theories such as a classical density functional theory(DFT), and also discuss, in the framework of classical DFT, the potential of our CPSE scheme in several typical problems of chemical physics interest. (iv) Finally, we consider several topics which are possibly expected to be settled in the immediate future and possible integration with other liquid state theory frameworks aiming to solve problems in complex fluids in both bulk and inhomogeneous states.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3674298.html;jsessionid=cgL_av8RRhaKQA1EfYsEHnYO.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3674298&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3674298&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3674298'
Right1,Right2,Right3,