1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3675798
1.
1. A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1544
2.
2. A. Balandin, Phys. Low-Dimens. Str. 1–2: 1 (2000).
3.
3. G. Chen, Int. J. Therm. Sci. 39, 471 (2000).
http://dx.doi.org/10.1016/S1290-0729(00)00202-7
4.
4. G. Chen, J. Nanopart. Res. 2, 199 (2000).
http://dx.doi.org/10.1023/A:1010003718481
5.
5. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
http://dx.doi.org/10.1063/1.1616981
6.
6. G. Chen. A. Narayanaswamy, and C. Dames, Superlattice. Microst. 35, 161 (2004).
http://dx.doi.org/10.1016/j.spmi.2003.08.001
7.
7. A. A. Balandin, J. Nanosci. Nanotechnol. 5, 1015 (2005).
8.
8. M. M. Sigalas, J. Appl. Phys. 84, 3026 (1998).
http://dx.doi.org/10.1063/1.368456
9.
9. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 93, 24301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.024301
10.
10. M. I. Hussein, G. M. Hulbert, and R. A. Scott, J. Sound Vib. 307, 865 (2007).
http://dx.doi.org/10.1016/j.jsv.2007.07.021
11.
11. J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, Nat. Phys. 3, 851 (2007).
http://dx.doi.org/10.1038/nphys774
12.
12. I. El-Kady, R. H. Olsson III, and J. G. Fleming, Appl. Phys. Lett. 92, 233504 (2008).
http://dx.doi.org/10.1063/1.2938863
13.
13. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, Appl. Phys. Lett. 94, 051906 (2009).
http://dx.doi.org/10.1063/1.3078284
14.
14. D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 063015 (2008).
http://dx.doi.org/10.1088/1367-2630/10/6/063015
15.
15. X. F. Li, X. Ni, L. A. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
http://dx.doi.org/10.1103/PhysRevLett.106.084301
16.
16. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature 462, 78 (2009).
http://dx.doi.org/10.1038/nature08524
17.
17. N. Cleland, D. R. Schmidt, and C. S. Yung, Phys. Rev. B 64, 172301 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.172301
18.
18. A. Khitun, A. Balandin, J. L. Liu, and K. L. Wang, “The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity,” Superlattice Microst 30, 1 (2001).
http://dx.doi.org/10.1006/spmi.2001.0981
19.
19. A. A. Balandin, O. L. Lazarenkova, and R. T. Boechat, in Proceedings of XXII International Conference on Thermoelectrics (ICT’22), IEEE 03TH8726, pp. 399402, La Grand-Motte, France, 2003.
20.
20. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, E. L. Thomas, Phys. Rev. Lett. 94, 115501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.115501
21.
21. A. J. H. McGaughey, M. I. Hussein, E. S. Landry, M. Kaviany and G. M. Hulbert, Phys. Rev. B 74, 104304 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104304
22.
22. E. S. Laundry, M. I. Hussein and A. J. McGaughey, Phys. Rev. B 77, 184302 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.184302
23.
23. J.-N. Gillet, Y. Chalopin, and S. Volz, J. Heat Trans.-T. ASME 131, 043206 (2009).
http://dx.doi.org/10.1115/1.3072927
24.
24. J. Y. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Y. Huo, T. P. Russell and P. D. Yang, Nano Lett. 10, 4279 (2010).
http://dx.doi.org/10.1021/nl102931z
25.
25. J. Yu, S. Mitrovic, D. Tham, J. Varghese and J. Heath, Nat. Nanotechnol. 5, 718 (2010).
http://dx.doi.org/10.1038/nnano.2010.149
26.
26. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson III, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney and I. El-Kady, Nano Lett. 11, 107 (2011).
http://dx.doi.org/10.1021/nl102918q
27.
27. J. F. Robillard, K. Muralidharan, J. Bucay, P. A. Deymier, W. Beck and D. Barker, Chinese J. Phys. 49, 448 (2011).
28.
28. Y. P. He, D. Donadio, J. H. Lee, J. C. Grossman and G. Galli, ACS Nano 5, 1839 (2011).
http://dx.doi.org/10.1021/nn2003184
29.
29. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev. 48, 45 (2003).
http://dx.doi.org/10.1179/095066003225010182
30.
30. A. J. Minnich, M. S , Dresselhaus, Z. F. Ren and G. Chen, Energ. Environ. Sci. 2, 466 (2009).
http://dx.doi.org/10.1039/b822664b
31.
31. J. Callaway, Phys. Rev. 113, 1046 (1959).
http://dx.doi.org/10.1103/PhysRev.113.1046
32.
32. M. G. Holland, Phys. Rev. 132, 2461 (1963).
http://dx.doi.org/10.1103/PhysRev.132.2461
33.
33. G. P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990).
34.
34. A. J. H. McGaughey and M. Kaviany, Phys. Rev. B 69, 094303 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.094303
35.
35. General Utility Lattice Program, https://www.ivec.org/gulp.
36.
36. A. A. Maradudin, E. W. Montroll and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, NY, 1963).
37.
37. M. T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).
38.
38. J. Tersoff, Phys. Rev. B 37, 6991 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6991
39.
39. J. Tersoff, Phys. Rev. B 38, 9902 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9902
40.
40. D. F. Shanno, Math. Comput. 24, 647 (1970).
http://dx.doi.org/10.1090/S0025-5718-1970-0274029-X
41.
41. G. Dolling, Inelastic Scattering of Neutrons in Solids and Liquids, edited by S. Ekland, Vol. II, 37 (IAEA, Vienna, 1963).
42.
42. N. Mingo, Phys. Rev. B 68, 113308 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.113308
43.
43. C. Y. Ho, R. W. Powell, P. E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972).
http://dx.doi.org/10.1063/1.3253100
44.
44. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, NJ, 2002).
45.
45. S. K. Bux, Adv. Funct. Mater. 19, 2445 (2009).
http://dx.doi.org/10.1002/adfm.200900250
46.
46. S. P. Hepplestone and G. P. Srivastava, Nanotechnology 17, 3288 (2006).
http://dx.doi.org/10.1088/0957-4484/17/13/035
47.
47. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90888-T
48.
48. M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
49.
49. M. M. Sigalas and N. García, J. Appl. Phys. 87, 3122 (2000).
http://dx.doi.org/10.1063/1.372308
50.
50. M. Torres, F. R. Montero de Espinosa, D. García-Pablos and N. García, Phys. Rev. Lett. 82, 3054 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3054
51.
51. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Ph. Lambin and L. Dobrzynski, Phys. Rev. B 65, 174308 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.174308
52.
52. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
http://dx.doi.org/10.1063/1.1757642
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675798
Loading
/content/aip/journal/adva/1/4/10.1063/1.3675798
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3675798
2011-12-23
2014-08-22

Abstract

The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell) and the phononic crystal lattice (defined by a supercell) contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant), dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3675798.html;jsessionid=4mhd41s0rsgti.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3675798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal characterization of nanoscale phononic crystals using supercell lattice dynamics
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675798
10.1063/1.3675798
SEARCH_EXPAND_ITEM