Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. A. Balandin and K. L. Wang, Phys. Rev. B 58, 1544 (1998).
2. A. Balandin, Phys. Low-Dimens. Str. 1–2: 1 (2000).
3. G. Chen, Int. J. Therm. Sci. 39, 471 (2000).
4. G. Chen, J. Nanopart. Res. 2, 199 (2000).
5. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, and A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003).
6. G. Chen. A. Narayanaswamy, and C. Dames, Superlattice. Microst. 35, 161 (2004).
7. A. A. Balandin, J. Nanosci. Nanotechnol. 5, 1015 (2005).
8. M. M. Sigalas, J. Appl. Phys. 84, 3026 (1998).
9. S. Yang, J. H. Page, Z. Liu, M. L. Cowan, C. T. Chan, and P. Sheng, Phys. Rev. Lett. 93, 24301 (2004).
10. M. I. Hussein, G. M. Hulbert, and R. A. Scott, J. Sound Vib. 307, 865 (2007).
11. J. Christensen, A. I. Fernandez-Dominguez, F. de Leon-Perez, L. Martin-Moreno, and F. J. Garcia-Vidal, Nat. Phys. 3, 851 (2007).
12. I. El-Kady, R. H. Olsson III, and J. G. Fleming, Appl. Phys. Lett. 92, 233504 (2008).
13. S. Mohammadi, A. A. Eftekhar, W. D. Hunt, and A. Adibi, Appl. Phys. Lett. 94, 051906 (2009).
14. D. Torrent and J. Sánchez-Dehesa, New J. Phys. 10, 063015 (2008).
15. X. F. Li, X. Ni, L. A. Feng, M. H. Lu, C. He, and Y. F. Chen, Phys. Rev. Lett. 106, 084301 (2011).
16. M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Nature 462, 78 (2009).
17. N. Cleland, D. R. Schmidt, and C. S. Yung, Phys. Rev. B 64, 172301 (2001).
18. A. Khitun, A. Balandin, J. L. Liu, and K. L. Wang, “The effect of the long-range order in a quantum dot array on the in-plane lattice thermal conductivity,” Superlattice Microst 30, 1 (2001).
19. A. A. Balandin, O. L. Lazarenkova, and R. T. Boechat, in Proceedings of XXII International Conference on Thermoelectrics (ICT’22), IEEE 03TH8726, pp. 399402, La Grand-Motte, France, 2003.
20. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, E. L. Thomas, Phys. Rev. Lett. 94, 115501 (2005).
21. A. J. H. McGaughey, M. I. Hussein, E. S. Landry, M. Kaviany and G. M. Hulbert, Phys. Rev. B 74, 104304 (2006).
22. E. S. Laundry, M. I. Hussein and A. J. McGaughey, Phys. Rev. B 77, 184302 (2008).
23. J.-N. Gillet, Y. Chalopin, and S. Volz, J. Heat Trans.-T. ASME 131, 043206 (2009).
24. J. Y. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Y. Huo, T. P. Russell and P. D. Yang, Nano Lett. 10, 4279 (2010).
25. J. Yu, S. Mitrovic, D. Tham, J. Varghese and J. Heath, Nat. Nanotechnol. 5, 718 (2010).
26. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson III, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney and I. El-Kady, Nano Lett. 11, 107 (2011).
27. J. F. Robillard, K. Muralidharan, J. Bucay, P. A. Deymier, W. Beck and D. Barker, Chinese J. Phys. 49, 448 (2011).
28. Y. P. He, D. Donadio, J. H. Lee, J. C. Grossman and G. Galli, ACS Nano 5, 1839 (2011).
29. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev. 48, 45 (2003).
30. A. J. Minnich, M. S , Dresselhaus, Z. F. Ren and G. Chen, Energ. Environ. Sci. 2, 466 (2009).
31. J. Callaway, Phys. Rev. 113, 1046 (1959).
32. M. G. Holland, Phys. Rev. 132, 2461 (1963).
33. G. P. Srivastava, The Physics of Phonons (Adam Hilger, Bristol, 1990).
34. A. J. H. McGaughey and M. Kaviany, Phys. Rev. B 69, 094303 (2004).
35. General Utility Lattice Program,
36. A. A. Maradudin, E. W. Montroll and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic Press, New York, NY, 1963).
37. M. T. Dove, Introduction to Lattice Dynamics (Cambridge University Press, Cambridge, 1993).
38. J. Tersoff, Phys. Rev. B 37, 6991 (1988).
39. J. Tersoff, Phys. Rev. B 38, 9902 (1988).
40. D. F. Shanno, Math. Comput. 24, 647 (1970).
41. G. Dolling, Inelastic Scattering of Neutrons in Solids and Liquids, edited by S. Ekland, Vol. II, 37 (IAEA, Vienna, 1963).
42. N. Mingo, Phys. Rev. B 68, 113308 (2003).
43. C. Y. Ho, R. W. Powell, P. E. Liley, J. Phys. Chem. Ref. Data 1, 279 (1972).
44. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, NJ, 2002).
45. S. K. Bux, Adv. Funct. Mater. 19, 2445 (2009).
46. S. P. Hepplestone and G. P. Srivastava, Nanotechnology 17, 3288 (2006).
47. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
48. M. S. Kushwaha, P. Halevi, L. Dobrzynski and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
49. M. M. Sigalas and N. García, J. Appl. Phys. 87, 3122 (2000).
50. M. Torres, F. R. Montero de Espinosa, D. García-Pablos and N. García, Phys. Rev. Lett. 82, 3054 (1999).
51. A. Khelif, B. Djafari-Rouhani, J. O. Vasseur, P. A. Deymier, Ph. Lambin and L. Dobrzynski, Phys. Rev. B 65, 174308 (2002).
52. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).

Data & Media loading...


Article metrics loading...



The concept of a phononic crystal can in principle be realized at the nanoscale whenever the conditions for coherent phonon transport exist. Under such conditions, the dispersion characteristics of both the constitutive material lattice (defined by a primitive cell) and the phononic crystal lattice (defined by a supercell) contribute to the value of the thermal conductivity. It is therefore necessary in this emerging class of phononic materials to treat the lattice dynamics at both periodicity levels. Here we demonstrate the utility of using supercell lattice dynamics to investigate the thermal transport behavior of three-dimensional nanoscale phononic crystals formed from silicon and cubic voids of vacuum. The periodicity of the voids follows a simple cubic arrangement with a lattice constant that is around an order of magnitude larger than that of the bulk crystalline silicon primitive cell. We consider an atomic-scale supercell which incorporates all the details of the silicon atomic locations and the void geometry. For this supercell, we compute the phonon band structure and subsequently predict the thermal conductivity following the Callaway-Holland model. Our findings dictate that for an analysis based on supercell lattice dynamics to be representative of the properties of the underlying lattice model, a minimum supercell size is needed along with a minimum wave vector sampling resolution. Below these minimum values, a thermal conductivity prediction of a bulk material based on a supercell will not adequately recover the value obtained based on a primitive cell. Furthermore, our results show that for the relatively small voids and void spacings we consider (where boundary scattering is dominant), dispersion at the phononic crystal unit cell level plays a noticeable role in determining the thermal conductivity.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd