Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Commun. 86, 141143 (1993).
2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 20222025 (1993).
3. V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80, 092301 (2009).
4. V. Romero-García, J. V. Sánchez-Pérez, S. Castiñeira-Ibáñez, and L. M. Garcia-Raffi, “Evidences of evanescent bloch waves in phononic crystals,” Appl. Phys. Lett. 96, 124102 (2010).
5. R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
6. F. R. Montero de Espinosa, E. Jiménez, and M. Torres, “Ultrasonic band gap in a periodic two-dimensional composite,” Phys. Rev. Lett. 80, 12081211 (1998).
7. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 214301 (2003).
8. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 44004002 (2004).
9. J. V. Sánchez-Pérez, D. Caballero, R. Martínez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, and F. Galves, “Sound attenuation by a two-dimensional array of rigid cylinders,” Phys. Rev. Lett. 80, 53255228 (1998).
10. C. Rubio, D. Caballero, J. Sánchez-Pérez, R. Martinez-Sala, J. Sánchez-Dehesa, F. Meseguer, and F. Cervera, “The existence of full gaps and deaf bands in two-dimensional sonic crystals,” J. of Lightwave Technology 17, 22022207 (1999).
11. D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Martinez-Sala, J. V. Sanchez-Perez, F. Meseguer, and J. Llinares, “Large two-dimensional sonic band gaps,” Phys. Rev. E 60, R6316R6319 (1999).
12. L. Sanchis, F. Cervera, J. Sánchez-Dehesa, J. V. Sánchez-Pérez, C. Rubio, and R. Martínez-Sala, “Reflectance properties of two-dimensional sonic band-gap crystals,” J. Acoust. Soc. Am. 109, 2598 (2001).
13. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B 62, 278291 (2000).
14. I. E. Psarobas, N. Stefanou, and A. Modinos, “Phononic crystals with planar defects,” Phys. Rev. B 62, 55365540 (2000).
15. I. E. Psarobas, A. Modinos, R. Sainidou, and N. Stefanou, “Acoustic properties of colloidal crystals,” Phys. Rev. B 65, 064307 (2002).
16. F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, and V. Laude, “Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals,” J. Appl. Phys. 101, 044903 (2007).
17. J.-H. Sun and T.-T. Wu, “Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method,” Phys. Rev. B 76, 104304 (2007).
18. T.-C. Wu, T.-T. Wu, and J.-C. Hsu, “Waveguiding and frequency selection of lamb waves in a plate with a periodic stubbed surface,” Phys. Rev. B 79, 104306 (2009).
19. M. Gorisse, S. Benchabane, G. Teissier, C. Billard, A. Reinhardt, V. Laude, E. Defaÿ, and M. Aïd, “Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab,” Appl. Phys. Lett. 98, 234103 (2011).
20. D. Royer and E. Dieulesaint, Elastic waves in solids (Wiley, New York, 1999).
21. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Subwavelength structure of the evanescent field of an optical bloch wave,” Phys. Rev. Lett. 102, 023902 (2009).
22. M. I. Hussein, “Reduced bloch mode expansion for periodic media band structure calculations,” Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences 465, 28252848 (2009).

Data & Media loading...


Article metrics loading...



We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd