Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3675828
1.
1. M. M. Sigalas and E. N. Economou, “Band structure of elastic waves in two dimensional systems,” Solid State Commun. 86, 141143 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90888-T
2.
2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett. 71, 20222025 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
3.
3. V. Laude, Y. Achaoui, S. Benchabane, and A. Khelif, “Evanescent Bloch waves and the complex band structure of phononic crystals,” Phys. Rev. B 80, 092301 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.092301
4.
4. V. Romero-García, J. V. Sánchez-Pérez, S. Castiñeira-Ibáñez, and L. M. Garcia-Raffi, “Evidences of evanescent bloch waves in phononic crystals,” Appl. Phys. Lett. 96, 124102 (2010).
http://dx.doi.org/10.1063/1.3367739
5.
5. R. P. Moiseyenko and V. Laude, “Material loss influence on the complex band structure and group velocity in phononic crystals,” Phys. Rev. B 83, 064301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.064301
6.
6. F. R. Montero de Espinosa, E. Jiménez, and M. Torres, “Ultrasonic band gap in a periodic two-dimensional composite,” Phys. Rev. Lett. 80, 12081211 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1208
7.
7. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, “Trapping and guiding of acoustic waves by defect modes in a full-band-gap ultrasonic crystal,” Phys. Rev. B 68, 214301 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214301
8.
8. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, “Guiding and bending of acoustic waves in highly confined phononic crystal waveguides,” Appl. Phys. Lett. 84, 44004002 (2004).
http://dx.doi.org/10.1063/1.1757642
9.
9. J. V. Sánchez-Pérez, D. Caballero, R. Martínez-Sala, C. Rubio, J. Sánchez-Dehesa, F. Meseguer, J. Llinares, and F. Galves, “Sound attenuation by a two-dimensional array of rigid cylinders,” Phys. Rev. Lett. 80, 53255228 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.5325
10.
10. C. Rubio, D. Caballero, J. Sánchez-Pérez, R. Martinez-Sala, J. Sánchez-Dehesa, F. Meseguer, and F. Cervera, “The existence of full gaps and deaf bands in two-dimensional sonic crystals,” J. of Lightwave Technology 17, 22022207 (1999).
http://dx.doi.org/10.1109/50.803012
11.
11. D. Caballero, J. Sanchez-Dehesa, C. Rubio, R. Martinez-Sala, J. V. Sanchez-Perez, F. Meseguer, and J. Llinares, “Large two-dimensional sonic band gaps,” Phys. Rev. E 60, R6316R6319 (1999).
http://dx.doi.org/10.1103/PhysRevE.60.R6316
12.
12. L. Sanchis, F. Cervera, J. Sánchez-Dehesa, J. V. Sánchez-Pérez, C. Rubio, and R. Martínez-Sala, “Reflectance properties of two-dimensional sonic band-gap crystals,” J. Acoust. Soc. Am. 109, 2598 (2001).
http://dx.doi.org/10.1121/1.1369784
13.
13. I. E. Psarobas, N. Stefanou, and A. Modinos, “Scattering of elastic waves by periodic arrays of spherical bodies,” Phys. Rev. B 62, 278291 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.278
14.
14. I. E. Psarobas, N. Stefanou, and A. Modinos, “Phononic crystals with planar defects,” Phys. Rev. B 62, 55365540 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.5536
15.
15. I. E. Psarobas, A. Modinos, R. Sainidou, and N. Stefanou, “Acoustic properties of colloidal crystals,” Phys. Rev. B 65, 064307 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.064307
16.
16. F.-L. Hsiao, A. Khelif, H. Moubchir, A. Choujaa, C.-C. Chen, and V. Laude, “Complete band gaps and deaf bands of triangular and honeycomb water-steel phononic crystals,” J. Appl. Phys. 101, 044903 (2007).
http://dx.doi.org/10.1063/1.2472650
17.
17. J.-H. Sun and T.-T. Wu, “Propagation of acoustic waves in phononic-crystal plates and waveguides using a finite-difference time-domain method,” Phys. Rev. B 76, 104304 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.104304
18.
18. T.-C. Wu, T.-T. Wu, and J.-C. Hsu, “Waveguiding and frequency selection of lamb waves in a plate with a periodic stubbed surface,” Phys. Rev. B 79, 104306 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.104306
19.
19. M. Gorisse, S. Benchabane, G. Teissier, C. Billard, A. Reinhardt, V. Laude, E. Defaÿ, and M. Aïd, “Observation of band gaps in the gigahertz range and deaf bands in a hypersonic aluminum nitride phononic crystal slab,” Appl. Phys. Lett. 98, 234103 (2011).
http://dx.doi.org/10.1063/1.3598425
20.
20. D. Royer and E. Dieulesaint, Elastic waves in solids (Wiley, New York, 1999).
21.
21. R. J. P. Engelen, D. Mori, T. Baba, and L. Kuipers, “Subwavelength structure of the evanescent field of an optical bloch wave,” Phys. Rev. Lett. 102, 023902 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.023902
22.
22. M. I. Hussein, “Reduced bloch mode expansion for periodic media band structure calculations,” Proceedings of the Royal Society A-Mathematical Physical and Engineering Sciences 465, 28252848 (2009).
http://dx.doi.org/10.1098/rspa.2008.0471
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675828
Loading
/content/aip/journal/adva/1/4/10.1063/1.3675828
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3675828
2011-12-23
2016-09-28

Abstract

We investigate modal conversion at the boundary between a homogeneous incident medium and a phononic crystal, with consideration of the impact of symmetry on the excitation of Bloch waves. We give a quantitative criterion for the appearance of deaf Bloch waves, which are antisymmetric with respect to a symmetry axis of the phononic crystal, in the frame of generalized Fresnel formulas for reflection and transmission at the phononic crystal boundary. This criterion is used to index Bloch waves in the complex band structure of the phononic crystal, for directions of incidence along a symmetry axis. We argue that within deaf frequency ranges transmission is multi-exponential, as it is within frequency band gaps.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3675828.html;jsessionid=toi5tIBiaEwKK043I8mg3rQH.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3675828&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3675828&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3675828'
Right1,Right2,Right3,