1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
oa
Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique
Rent:
Rent this article for
Access full text Article
/content/aip/journal/adva/1/4/10.1063/1.3675918
1.
1. G. Chen, Phys. Rev. B, Condens. Matter 57 (23), 1495814973 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.14958
2.
2. S. M. Lee, D. G. Cahill and R. Venkatasubramanian, Appl. Phys. Lett. 70 (22), 29572959 (1997).
http://dx.doi.org/10.1063/1.118755
3.
3. R. Venkatasubramanian, Phys. Rev. B, Condens. Matter 61 (4), 30913097 (2000).
http://dx.doi.org/10.1103/PhysRevB.61.3091
4.
4. L. Deyu, W. Yiying, P. Kim, S. Li, Y. Peidong and A. Majumdar, Appl. Phys. Lett. 83 (14), 29342936 (2003).
http://dx.doi.org/10.1063/1.1616981
5.
5. N. Mingo, Phys. Rev., B, Condens, Matter Mater. Phys. 68 (11), 113308113301 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.113308
6.
6. C. Renkun, A. I. Hochbaum, P. Murphy, J. Moore, Y. Peidong and A. Majumdar, Phys. Rev. Lett. 101 (10), 105501105501 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.105501
7.
7. W. Luan, S. Mao, S. Tu, L. Gao and J. Guo, J. Chin. Ceram. Soc. 34 (2), 137141141 (2006).
8.
8. J. G. Noudem, S. Lemonnier, M. Prevel, E. S. Reddy, E. Guilmeau and C. Goupil, Key Eng. Mater. 352, 245250250 (2007).
http://dx.doi.org/10.4028/www.scientific.net/KEM.352.245
9.
9. Z. Yuqin, I. Matsubara, S. Horii, T. Takeuchi, R. Funahashi, M. Shikano, S. Jun-ichi, K. Kishio, W. Shin, N. Izu and N. Murayama, J. Appl. Phys. 93 (5), 265326582658 (2003).
http://dx.doi.org/10.1063/1.1542942
10.
10. P. E. Hopkins, C. M. Reinke, M. F. Su, R. H. Olsson, E. A. Shaner, Z. C. Leseman, J. R. Serrano, L. M. Phinney and I. El-Kady, Nano Letters 11 (1), 107112 (2010).
http://dx.doi.org/10.1021/nl102918q
11.
11. R. H. Olsson, I. F. El-Kady, F. McCormick, J. G. Fleming, C. Fleming, “Microfabricated bulk wave acoustic bandgap device,” U. S. Patent No. 7,836,566, 2010.
12.
12. A. J. H. McGaughey, M. I. Hussein, E. S. Landry, M. Kaviany and G. M. Hulbert, Physical Review B 74 (10), 104304 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.104304
13.
13. E. S. Landry, M. I. Hussein and A. J. H. McGaughey, Physical Review B 77 (18), 184302 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.184302
14.
14. M. T. Dove, Introduction to Lattice Dynamics. (Press Syndicate of the University of Cambridge, New York City, NY, 1993).
15.
15. J. N. Gillet, C. Yann and S. Volz, J. Heat Transf. 131 (4), 043206 (043210 pp.) (2009).
http://dx.doi.org/10.1115/1.3072927
16.
16. J.-H. Lee, G. A. Galli and J. C. Grossman, Nano Letters 8 (11), 37503754 (2008).
http://dx.doi.org/10.1021/nl802045f
17.
17. J.-F. Robillard, K. Muralidharan, J. Bucay, P. A. Deymier, W. Beck and D. Barker, Chinese Journal of Physics 49 (1), 488 (2011).
18.
18. Y. He, D. Donadio, J.-H. Lee, J. C. Grossman and G. Galli, ACS Nano 5 (3), 18391844 (2011).
http://dx.doi.org/10.1021/nn2003184
19.
19. A. A. Balandin, O. L. Lazarenkova and R. T. Boechat, presented at the Thermoelectrics, 2003 Twenty-Second International Conference on - ICT, 2003 (unpublished).
20.
20. O. L. Lazarenkova and A. A. Balandin, Physical Review B 66 (24), 245319 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.245319
21.
21. A. Khitun, A. Balandin, J. L. Liu and K. L. Wang, Superlattices and Microstructures 30 (1), 18 (2001).
http://dx.doi.org/10.1006/spmi.2001.0981
22.
22. J. Tang, H.-T. Wang, D. H. Lee, M. Fardy, Z. Huo, T. P. Russell and P. Yang, Nano Letters 10 (10), 42794283 (2010).
http://dx.doi.org/10.1021/nl102931z
23.
23. A. Balandin and K. L. Wang, Physical Review B 58 (3), 15441549 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.1544
24.
24. A. Balandin and K. L. Wang, J. Appl. Phys. 84 (11), 61496153 (1998).
http://dx.doi.org/10.1063/1.368928
25.
25. A. Khitun, A. Balandin, J. L. Liu and K. L. Wang, J. Appl. Phys. 88 (2), 696699 (2000).
http://dx.doi.org/10.1063/1.373723
26.
26. J. Zou and A. Balandin, J. Appl. Phys. 89 (5), 29322938 (2001).
http://dx.doi.org/10.1063/1.1345515
27.
27. A. N. Cleland, D. R. Schmidt and C. S. Yung, Physical Review B 64 (17), 172301 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.172301
28.
28. J. Callaway, Phys. Rev. 113 (4), 10461051 (1959).
http://dx.doi.org/10.1103/PhysRev.113.1046
29.
29. M. G. Holland, Phys. Rev. 132 (6), 24612471 (1963).
http://dx.doi.org/10.1103/PhysRev.132.2461
30.
30. C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2005).
31.
31. M. M. Sigalas and E. N. Economou, J. Sound Vib. 158 (2), 377382 (1992).
http://dx.doi.org/10.1016/0022-460X(92)90059-7
32.
32. M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski and B. Djafari-Rouhani, Phys. Rev. B, Condens. Matter 49 (4), 23132322 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.2313
33.
33. J. O. Vasseur, P. A. Deymier, B. Djafari-Rouhani, Y. Pennec and A. C. Hladky-Hennion, Phys. Rev., B, Condens, Matter Mater. Phys. 77 (8), 085415085411 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085415
34.
34. M. I. Hussein, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 465 (2109), 28252848 (2009).
http://dx.doi.org/10.1098/rspa.2008.0471
35.
35. J. Tersoff, Physical Review B 37 (12), 69917000 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.6991
36.
36. J. Tersoff, Physical Review B 38 (14), 99029905 (1988).
http://dx.doi.org/10.1103/PhysRevB.38.9902
37.
37. P. E. Hopkins, L. M. Phinney, P. T. Rakich, R. H. Olsson and I. El-Kady, Appl. Phys. A-Mater. Sci. Process. 103 (3), 575579 (2011).
http://dx.doi.org/10.1007/s00339-010-6189-8
38.
38. P. E. Hopkins, P. T. Rakich, R. H. Olsson III, I. F. El-kady and L. M. Phinney, Appl. Phys. Lett. 95 (16), 161902 (161903 pp.) (2009).
http://dx.doi.org/10.1063/1.3250166
39.
39. A. Eucken,(VDI Verlagg m.b.h., Dusseldorf, Ausgabe B, 1932), pp. 3/4 VDI Forschungsheft 353.
40.
40. E. P. Pokatilov, D. L. Nika and A. A. Balandin, Physical Review B 72 (11), 113311 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.113311
41.
41. E. P. Pokatilov, D. L. Nika and A. A. Balandin, Superlattices and Microstructures 33 (3), 155171 (2003).
http://dx.doi.org/10.1016/S0749-6036(03)00069-7
42.
42. E. P. Pokatilov, D. L. Nika and A. A. Balandin, Superlattices and Microstructures 38 (3), 168183 (2005).
http://dx.doi.org/10.1016/j.spmi.2005.06.001
43.
43. J. E. Turney, A. J. H. McGaughey and C. H. Amon, J. Appl. Phys. 107 (2), 024317024318 (2010).
http://dx.doi.org/10.1063/1.3296394
44.
44. J.-K. Yu, S. Mitrovic, D. Tham, J. Varghese and J. R. Heath, Nature Nanotechnology (2010).
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675918
Loading
/content/aip/journal/adva/1/4/10.1063/1.3675918
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3675918
2011-12-29
2014-12-19

Abstract

Recent work has demonstrated that nanostructuring of a semiconductor material to form a phononic crystal (PnC) can significantly reduce its thermal conductivity. In this paper, we present a classical method that combines atomic-level information with the application of Bloch theory at the continuum level for the prediction of the thermal conductivity of finite-thickness PnCs with unit cells sized in the micron scale. Lattice dynamics calculations are done at the bulk material level, and the plane-wave expansion method is implemented at the macrosale PnC unit cell level. The combination of the lattice dynamics-based and continuum mechanics-based dispersion information is then used in the Callaway-Holland model to calculate the thermal transport properties of the PnC. We demonstrate that this hybrid approach provides both accurate and efficient predictions of the thermal conductivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3675918.html;jsessionid=1b3xf10n8a0wt.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3675918&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Thermal conductivity prediction of nanoscale phononic crystal slabs using a hybrid lattice dynamics-continuum mechanics technique
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675918
10.1063/1.3675918
SEARCH_EXPAND_ITEM