Skip to main content

News about Scitation

In December 2016 Scitation will launch with a new design, enhanced navigation and a much improved user experience.

To ensure a smooth transition, from today, we are temporarily stopping new account registration and single article purchases. If you already have an account you can continue to use the site as normal.

For help or more information please visit our FAQs.

banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3675923
1.
1. M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
http://dx.doi.org/10.1016/0038-1098(93)90888-T
2.
2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.2022
3.
3. M. M. Sigalas and N. Garcia, J. Appl. Phys. 87, 3122 (2000).
http://dx.doi.org/10.1063/1.372308
4.
4. S. Yang, J. Page, Z. Liu, M. Cowan, C. Chan, and P. Sheng, Phys. Rev. Lett. 93, 24301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.024301
5.
5. E. Soliveres, V. Espinosa, I. Pérez-Arjona, V. Sánchez-Morcillo, and K. Staliunas, Appl. Phys. Lett. 94, 164101 (2009).
http://dx.doi.org/10.1063/1.3104861
6.
6. R. Martínez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer, Nature 378, 241 (1995).
http://dx.doi.org/10.1038/378241a0
7.
7. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3012
8.
8. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, Phys. Rev. B 68, 214301 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.214301
9.
9. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
http://dx.doi.org/10.1063/1.1757642
10.
10. A. Khelif, M. Wilm, V. Laude, S. Ballandras, and B. Djafari-Rouhani, Phys. Rev. E 69, 067601 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.067601
11.
11. Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude, Appl. Phys. Lett. 87, 261912 (2005).
http://dx.doi.org/10.1063/1.2158019
12.
12. Y. Tanaka and S. I. Tamura, Phys. Rev. B 58, 7958 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.7958
13.
13. J. Vasseur, P. Deymier, B. Djafari-Rouhani, Y. Pennec, and A. Hladky-Hennion, Phys. Rev. B 77, 085415 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.085415
14.
14. S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and V. Laude, Appl. Phys. Lett. 98, 171908 (2011).
http://dx.doi.org/10.1063/1.3583982
15.
15. T.-T. Wu, L.-C. Wu, and Z.-G. Huang, J. Appl. Phys. 97, 094916 (2005).
http://dx.doi.org/10.1063/1.1893209
16.
16. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, Phys. Rev. B 81, 214303 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.214303
17.
17. Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, PRB 83, 104201 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104201
18.
18. T.-T. Wu, Z.-G. Huang, T.-C. Tsai, and T.-C. Wu, Appl. Phys. Lett. 93, 111902 (2008).
http://dx.doi.org/10.1063/1.2970992
19.
19. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, Phys. Rev. E 74, 046610 (2006).
http://dx.doi.org/10.1103/PhysRevE.74.046610
20.
20. J.-P. Berenger, J. Comp. Phys. 114, 185 (1994).
http://dx.doi.org/10.1006/jcph.1994.1159
21.
21. V. Romero-García, J. Sánchez-Pérez, and L. Garcia-Raffi, New Journal of Physics 12, 083024 (2010).
http://dx.doi.org/10.1088/1367-2630/12/8/083024
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675923
Loading
/content/aip/journal/adva/1/4/10.1063/1.3675923
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3675923
2011-12-29
2016-12-06

Abstract

We present a theoretical analysis of an in-plane confinement and a waveguiding of surface acoustic waves in pillars-based phononic crystal. The artificial crystal is made up of cylindrical pillars placed on a semi-infinite medium and arranged in a square array. With a well-chosen of the geometrical parameters, this pillars-based system can display two kinds of complete band gaps for guided waves propagating near the surface, a low frequency gap based on locally resonant mode of pillars as well as a higher frequency gap appearing at Bragg scattering regime. In addition, we demonstrate a waveguiding of surface acoustic wave inside an extended linear defect created by removing rows of pillars in the perfect crystal. We discuss the transmission and the polarization of such confined mode appearing in the higher frequency band gap. We highlight the strong similarity of such defect mode and the Rayleigh wave of free surface medium. An efficient finite element analysis is used to simulate the propagation of guided waves through silicon pillars on a silicon substrate.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3675923.html;jsessionid=elZLAupJCBhH4DEV_HHNmTsy.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3675923&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3675923&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3675923'
Right1,Right2,Right3,