Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1. M. M. Sigalas and E. N. Economou, Solid State Commun. 86, 141 (1993).
2. M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Phys. Rev. Lett. 71, 2022 (1993).
3. M. M. Sigalas and N. Garcia, J. Appl. Phys. 87, 3122 (2000).
4. S. Yang, J. Page, Z. Liu, M. Cowan, C. Chan, and P. Sheng, Phys. Rev. Lett. 93, 24301 (2004).
5. E. Soliveres, V. Espinosa, I. Pérez-Arjona, V. Sánchez-Morcillo, and K. Staliunas, Appl. Phys. Lett. 94, 164101 (2009).
6. R. Martínez-Sala, J. Sancho, J. V. Sanchez, V. Gomez, J. Llinares, and F. Meseguer, Nature 378, 241 (1995).
7. J. O. Vasseur, P. A. Deymier, B. Chenni, B. Djafari-Rouhani, L. Dobrzynski, and D. Prevost, Phys. Rev. Lett. 86, 3012 (2001).
8. A. Khelif, A. Choujaa, B. Djafari-Rouhani, M. Wilm, S. Ballandras, and V. Laude, Phys. Rev. B 68, 214301 (2003).
9. A. Khelif, A. Choujaa, S. Benchabane, B. Djafari-Rouhani, and V. Laude, Appl. Phys. Lett. 84, 4400 (2004).
10. A. Khelif, M. Wilm, V. Laude, S. Ballandras, and B. Djafari-Rouhani, Phys. Rev. E 69, 067601 (2004).
11. Y. Pennec, B. Djafari-Rouhani, J. O. Vasseur, H. Larabi, A. Khelif, A. Choujaa, S. Benchabane, and V. Laude, Appl. Phys. Lett. 87, 261912 (2005).
12. Y. Tanaka and S. I. Tamura, Phys. Rev. B 58, 7958 (1998).
13. J. Vasseur, P. Deymier, B. Djafari-Rouhani, Y. Pennec, and A. Hladky-Hennion, Phys. Rev. B 77, 085415 (2008).
14. S. Benchabane, O. Gaiffe, G. Ulliac, R. Salut, Y. Achaoui, and V. Laude, Appl. Phys. Lett. 98, 171908 (2011).
15. T.-T. Wu, L.-C. Wu, and Z.-G. Huang, J. Appl. Phys. 97, 094916 (2005).
16. A. Khelif, Y. Achaoui, S. Benchabane, V. Laude, and B. Aoubiza, Phys. Rev. B 81, 214303 (2010).
17. Y. Achaoui, A. Khelif, S. Benchabane, and V. Laude, PRB 83, 104201 (2011).
18. T.-T. Wu, Z.-G. Huang, T.-C. Tsai, and T.-C. Wu, Appl. Phys. Lett. 93, 111902 (2008).
19. A. Khelif, B. Aoubiza, S. Mohammadi, A. Adibi, and V. Laude, Phys. Rev. E 74, 046610 (2006).
20. J.-P. Berenger, J. Comp. Phys. 114, 185 (1994).
21. V. Romero-García, J. Sánchez-Pérez, and L. Garcia-Raffi, New Journal of Physics 12, 083024 (2010).

Data & Media loading...


Article metrics loading...



We present a theoretical analysis of an in-plane confinement and a waveguiding of surface acoustic waves in pillars-based phononic crystal. The artificial crystal is made up of cylindrical pillars placed on a semi-infinite medium and arranged in a square array. With a well-chosen of the geometrical parameters, this pillars-based system can display two kinds of complete band gaps for guided waves propagating near the surface, a low frequency gap based on locally resonant mode of pillars as well as a higher frequency gap appearing at Bragg scattering regime. In addition, we demonstrate a waveguiding of surface acoustic wave inside an extended linear defect created by removing rows of pillars in the perfect crystal. We discuss the transmission and the polarization of such confined mode appearing in the higher frequency band gap. We highlight the strong similarity of such defect mode and the Rayleigh wave of free surface medium. An efficient finite element analysis is used to simulate the propagation of guided waves through silicon pillars on a silicon substrate.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd