Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3675939
1.
1. S. Rytov, Soviet Physics-Acoustics 2, 68 (1956).
2.
2. F. Bloch, Z. Phys 52, 555 (1928).
3.
3. G. Floquet, Ann De Lecole Normale Superieure 2, 47 (1883).
4.
4. Z. Hashin and S. Shtrikman, Journal of the Mechanics and Physics of Solids 10, 335 (1962).
http://dx.doi.org/10.1016/0022-5096(62)90004-2
5.
5. Z. Hashin and S. Shtrikman, Journal of the Mechanics and Physics of Solids 10, 343 (1962).
http://dx.doi.org/10.1016/0022-5096(62)90005-4
6.
6. R. Hill, Journal of the Mechanics and Physics of Solids 11, 357 (1963).
http://dx.doi.org/10.1016/0022-5096(63)90036-X
7.
7. S. Nemat-Nasser, T. Iwakuma, and M. Hejazi, Mechanics of materials 1, 239 (1982).
http://dx.doi.org/10.1016/0167-6636(82)90017-5
8.
8. J. Willis, Journal of applied mechanics 50, 1202 (1983).
http://dx.doi.org/10.1115/1.3167202
9.
9. S. Nemat-Nasser, N. Yu, and M. Hori, Mechanics of materials 15, 163 (1993).
http://dx.doi.org/10.1016/0167-6636(93)90016-K
10.
10. S. Nemat-Nasser and M. Hori, Journal of engineering materials and technology 117, 412 (1995).
http://dx.doi.org/10.1115/1.2804735
11.
11. S. Nemat-Nasser and M. Hori, Micromechanics: overall properties of heterogeneous materials (Elsevier The Netherlands, 1999).
12.
12. W. Kohn, J. Krumhansl, and E. Lee, Journal of Applied Mechanics 39, 327 (1972).
http://dx.doi.org/10.1115/1.3422679
13.
13. S. Nemat-Nasser, Journal of Applied Mechanics 39, 850 (1972).
http://dx.doi.org/10.1115/1.3422814
14.
14. S. Nemat-Nasser, F. Fu, and S. Minagawa, International Journal of Solids and Structures 11, 617 (1975).
http://dx.doi.org/10.1016/0020-7683(75)90034-7
15.
15. S. Minagawa and S. Nemat-Nasser, International Journal of Solids and Structures 12, 769 (1976).
http://dx.doi.org/10.1016/0020-7683(76)90041-X
16.
16. I. Babuska and J. Osborn, Math. Comp 32, 991 (1978).
17.
17. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. Soukoulis, Nature 423, 604 (2003).
http://dx.doi.org/10.1038/423604b
18.
18. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. Soukoulis, Physical review letters 91, 207401 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.207401
19.
19. P. Parimi, W. Lu, P. Vodo, J. Sokoloff, J. Derov, and S. Sridhar, Physical review letters 92, 127401 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.127401
20.
20. Z. Lu, J. Murakowski, C. Schuetz, S. Shi, G. Schneider, and D. Prather, Physical review letters 95, 153901 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.153901
21.
21. S. Yang, J. Page, Z. Liu, M. Cowan, C. Chan, and P. Sheng, Physical review letters 93, 24301 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.024301
22.
22. M. Ke, Z. Liu, C. Qiu, W. Wang, J. Shi, W. Wen, and P. Sheng, Physical Review B 72, 064306 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.064306
23.
23. A. Sukhovich, L. Jing, and J. Page, Physical Review B 77, 014301 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.014301
24.
24. V. Veselago, Physics-Uspekhi 10, 509 (1968).
http://dx.doi.org/10.1070/PU1968v010n04ABEH003699
25.
25. J. Pendry, A. Holden, D. Robbins, and W. Stewart, Microwave Theory and Techniques, IEEE Transactions on 47, 2075 (1999).
http://dx.doi.org/10.1109/22.798002
26.
26. J. Pendry, Physical Review Letters 85, 3966 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.3966
27.
27. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, Physical Review Letters 84, 4184 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4184
28.
28. D. Smith, J. Pendry, and M. Wiltshire, Science 305, 788 (2004).
http://dx.doi.org/10.1126/science.1096796
29.
29. Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. Chan, and P. Sheng, Science 289, 1734 (2000).
http://dx.doi.org/10.1126/science.289.5485.1734
30.
30. Z. Liu, C. Chan, and P. Sheng, Physical Review B 71, 014103 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.014103
31.
31. J. Willis, Journal of the Mechanics and Physics of Solids 28, 287 (1980).
http://dx.doi.org/10.1016/0022-5096(80)90021-6
32.
32. J. Willis, in Continuum micromechanics (Springer-Verlag New York, Inc., 1997) pp. 265290.
33.
33. L. Wang and S. Rokhlin, The Journal of the Acoustical Society of America 112, 38 (2002).
http://dx.doi.org/10.1121/1.1488942
34.
34. D. Smith and J. Pendry, JOSA B 23, 391 (2006).
http://dx.doi.org/10.1364/JOSAB.23.000391
35.
35. A. Amirkhizi and S. Nemat-Nasser, Comptes Rendus Mecanique 336, 24 (2008).
http://dx.doi.org/10.1016/j.crme.2007.10.012
36.
36. G. Milton and J. Willis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 463, 855 (2007).
http://dx.doi.org/10.1098/rspa.2006.1795
37.
37. J. Willis, Mechanics of Materials 41, 385 (2009).
http://dx.doi.org/10.1016/j.mechmat.2009.01.010
38.
38. J. Willis, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science (2011).
39.
39. S. Nemat-Nasser, J. Willis, A. Srivastava, and A. Amirkhizi, Physical Review B 83, 104103 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.104103
40.
40. A. Shuvalov, A. Kutsenko, A. Norris, and O. Poncelet, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 467, 1749 (2011).
http://dx.doi.org/10.1098/rspa.2010.0389
41.
41. S. Nemat-Nasser and A. Srivastava, “Overall dynamic constitutive relations of layered elastic composites,” (2011), accepted in Journal of Mechanics and Physics of Solids, arXiv:1105.5173v1.
42.
42. A. Srivastava and S. Nemat-Nasser, “Overall dynamic properties of 3-d periodic elastic composites,” (2011), submitted to Proceeding of the Royal Society.
43.
43. A. Avila, G. Griso, and B. Miara, Comptes Rendus Mathematique 340, 933 (2005).
http://dx.doi.org/10.1016/j.crma.2005.04.026
44.
44. J. Willis, Advances in applied mechanics 21, 1 (1981).
http://dx.doi.org/10.1016/S0065-2156(08)70330-2
45.
45. J. Willis, Wave Motion 3, 1 (1981).
http://dx.doi.org/10.1016/0165-2125(81)90008-1
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3675939
Loading
/content/aip/journal/adva/1/4/10.1063/1.3675939
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3675939
2011-12-29
2016-09-29

Abstract

We report the results of the calculation of negative effective density and negative effective compliance for a layered composite. We show that the frequency-dependent effective properties remain positive for cases which lack the possibility of localized resonances (a 2-phase composite) whereas they may become negative for cases where there exists a possibility of local resonance below the length-scale of the wavelength (a 3-phase composite). We also show that the introduction of damping in the system considerably affects the effective properties in the frequency region close to the resonance. It is envisaged that this demonstration of doubly negative materialcharacteristics for 1-D wave propagation would pave the way for the design and synthesis of doubly negative material response for full 3-D elastic wave propagation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3675939.html;jsessionid=53hOi45gJNgWu44JNjwia_yr.x-aip-live-03?itemId=/content/aip/journal/adva/1/4/10.1063/1.3675939&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3675939&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3675939'
Right1,Right2,Right3,