Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/adva/1/4/10.1063/1.3676170
1.
1. R. H. Olsson, I. El-Kady. Meas. Sci. Technol. 20, 012002012001 (2008).
http://dx.doi.org/10.1088/0957-0233/20/1/012002
2.
2. S. Benchabane, A. Khelif, J. Y. Rauch, L. Robert, V. Laude. Phys. Rev. E 73, 065601065601 (2006).
http://dx.doi.org/10.1103/PhysRevE.73.065601
3.
3. T. Gorishnyy, C. K. Ullal, M. Maldovan, G. Fytas, E. L. Thomas. Phys. Rev. Lett. 94, 115501115501 (2005).
http://dx.doi.org/10.1103/PhysRevLett.94.115501
4.
4. T.-T. Wu, L.-C. Wu, Z.-G. Huang. J. Appl. Phys. 97, 094916094911 (2005).
http://dx.doi.org/10.1063/1.1893209
5.
5. I. El-Kady, R. H. Olsson, J. G. Fleming. Appl. Phys. Lett. 92, 233504233501(2008).
http://dx.doi.org/10.1063/1.2938863
6.
6. R. H. Olsson, S. X. Griego, I. El-Kady, M. Su, Y. Soliman, D. Goettler, Z. Leseman. In IEEE International Ultrasoncis Symposium. Roma, Italy, 2009.
7.
7. M. F. Su, R. H. Olsson, Z. C. Leseman, I. El-Kady. Appl. Phys. Lett. 96, 053111053111 (2010).
http://dx.doi.org/10.1063/1.3280376
8.
8. R. H. Olsson, J. G. Fleming, I. F. El-Kady, M. R. Tuck, F. B. McCormick. In Transducers and EuroSensors, 2007.
9.
9. M. M. Sigalas, E. N. Economou. J. Appl. Phys. 75, 2845 (1994).
http://dx.doi.org/10.1063/1.356177
10.
10. J. P. Wolfe. Imaging Phonons, Cambridge University Press, 1998.
11.
11. L. F. Lou. Introduction to Phonons and Electrons, World Scientific, 2003.
12.
12. W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou. Nat. Mater. 5, 830 (2006).
http://dx.doi.org/10.1038/nmat1727
13.
13. N. Gomopoulos, D. Maschke, C. Y. Koh, E. L. Thomas, W. Tremel, H. J. Butt, G. Fytas. Nano Lett. 10, 980984 (2010).
http://dx.doi.org/10.1021/nl903959r
14.
14. M. M. Sigalas, N. Garcia. J. Appl. Phys 87, 31223125 (2000).
http://dx.doi.org/10.1063/1.372308
15.
15. T.-T. Wu, Z.-G. Huang, S. Lin. Phys. Rev. B 69, 094301094301 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.094301
16.
16. Y. M. Soliman, M. F. Su, Z. C. Leseman, C. M. Reinke, I. I. El-Kady, R. H. O. III. Appl. Phys. Lett. Accepted.
17.
17. K. Edinger, T. Kraus. J. Vac. Sci. Technol. B 18, 31903193 (2000).
http://dx.doi.org/10.1116/1.1321761
18.
18. A. A. Tseng. J. Micromech. Microeng. 14, R15R34 (2004).
http://dx.doi.org/10.1088/0960-1317/14/4/R01
19.
19. R. R. Kunz, T. M. Mayer. Appl. Phys. Lett. 50, 962964 (1987).
http://dx.doi.org/10.1063/1.97999
20.
20. S. Lipp, L. Frey, C. Lehrer, E. Demm, S. Pauthner, H. Ryssel. Microelectron. Reliab. 36, 17791782 (1996).
http://dx.doi.org/10.1016/0026-2714(96)00196-5
21.
21. J. S. Ro, C. V. Thompson, J. Melngailis. J. Vac. Sci. Technol, B, 12, 7377 (1993).
http://dx.doi.org/10.1116/1.587111
22.
22. X. Xu, A. D. D. Ratta, J. Sosonkina, J. Melngailis. J. Vac. Sci. Technol. B. 10, 2675 (1992).
http://dx.doi.org/10.1116/1.586024
23.
23. R. Nassar, M. Vasile, W. Zhang. J. Vac. Sci. Technol. B, 16:109115 (1998).
http://dx.doi.org/10.1116/1.589763
24.
24. M. Russo, M. Maazouz, L. Giannuzzi, C. Chandler, M. Utlaut, B. Garrison. Appl. Surf. Sci. 255, 828830 (2008).
http://dx.doi.org/10.1016/j.apsusc.2008.05.083
25.
25. J. F. Ziegler, J. P. Biersack, M. D. Ziegler. SRIM The Stopping and Range of Ions in Matter, 2008.
26.
26. F. W. DelRio, M. P. DeBoer, J. A. Knapp, E. D. R. Jr., P. J. Clews, M. L. Dunn. Nature, 4, 629634 (2005).
http://dx.doi.org/10.1038/nmat1431
27.
27. D. Goettler, K. Murphy, A. Savkar, Z. Leseman. In ASME IMECE2007. Seattle, WA, 2007.
28.
28. Z. C. Leseman, S. P. Carlson, T. J. Mackin. J. Microelectromech. Syst. 16, 3843 (2007).
http://dx.doi.org/10.1109/JMEMS.2006.883570
29.
29. V. Ray, N. Antoniou, N. Bassom, A. Krechmer, A. Saxonis. J. Vac. Sci. Technol., B, 21, 27152719 (2003).
http://dx.doi.org/10.1116/1.1621666
http://aip.metastore.ingenta.com/content/aip/journal/adva/1/4/10.1063/1.3676170
Loading
/content/aip/journal/adva/1/4/10.1063/1.3676170
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/adva/1/4/10.1063/1.3676170
2011-12-29
2016-09-27

Abstract

Phononic crystals (PnCs) are man-made structures with periodically varying material properties such as density, ρ, and elastic modulus, E. Periodic variations of the material properties with nanoscale characteristic dimensions yield PnCs that operate at frequencies above 10 GHz, allowing for the manipulation of thermal properties. In this article, a 2D simple cubic lattice PnC operating at 33 GHz is reported. The PnC is created by nanofabrication with a focused ion beam. A freestanding membrane of silicon is ion milled to create a simple cubic array of 32 nm diameter holes that are subsequently backfilled with tungsten to create inclusions at a spacing of 100 nm. Simulations are used to predict the operating frequency of the PnC. Additional modeling shows that milling a freestanding membrane has a unique characteristic; the exit via has a conical shape, or trumpet-like appearance.

Loading

Full text loading...

/deliver/fulltext/aip/journal/adva/1/4/1.3676170.html;jsessionid=KWQ0HQ6p0wFp14hCxFWgQVcc.x-aip-live-02?itemId=/content/aip/journal/adva/1/4/10.1063/1.3676170&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/adva
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=aipadvances.aip.org/1/4/10.1063/1.3676170&pageURL=http://scitation.aip.org/content/aip/journal/adva/1/4/10.1063/1.3676170'
Right1,Right2,Right3,